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Abstract

Cognitive science and neuroscience have long faced the challenge of disen-
tangling representations of language from representations of conceptual
meaning. As the same problem arises in today’s language models (LMs),
we investigate the relationship between LM–brain alignment and two neu-
ral metrics: (1) the level of brain activation during processing of sentences,
targeting linguistic processing, and (2) a novel measure of meaning consis-
tency across input modalities, which quantifies how consistently a brain
region responds to the same concept across paradigms (sentence, word
cloud, image) using an fMRI dataset (Pereira et al., 2018). Our experiments
show that both language-only and language-vision models predict the sig-
nal better in more meaning-consistent areas of the brain, even when these
areas are not strongly sensitive to language processing, suggesting that
LMs might internally represent cross-modal conceptual meaning.1

1 Introduction

Much recent work at the intersection of AI and neuroscience has focused on discovering
the similarities and differences between the human brain and increasingly complex and
powerful artificial neural models (Oota et al., 2024b; Sucholutsky et al., 2024; Tuckute et al.,
2024a). Often, studies compare how these two systems encode information internally—for
example, how sentence representations in a language model (LM) align with the responses
to the same sentences in a certain region of the brain. Previous work has found correlations
between how sentences or narratives are represented in LMs and in the brain’s language
network (Toneva & Wehbe, 2019; Schrimpf et al., 2021; Goldstein et al., 2022; Tuckute
et al., 2024b), as well as between image representations in convolutional neural networks
and the visual cortex (Yamins et al., 2014; Horikawa & Kamitani, 2017; Conwell et al.,
2024). However, as models become more seamless in integrating different modalities, a
new question arises: do these models represent deeper, modality-independent conceptual
information in a brain-like way?

Recent evidence suggests that such conceptual representations exist in multimodal models
(Wu et al., 2025) and that models learn similar representations from different modalities
(Merullo et al., 2023; Maniparambil et al., 2024; Huh et al., 2024). However, comparing
these representations with the brain is challenging given that the ways in which the brain
represents and processes conceptual knowledge remain debated (Kiefer & Pulvermüller,
2012) and there are no clearly delineated “concept-representing regions”. In this paper, we
propose a new way of localizing concept-representing areas in the brain by using fMRI data
collected in a multimodal experiment targeting conceptual processing (Pereira et al., 2018).
In this study, participants read text or looked at images representing a particular concept,
and their brain responses to these stimuli were recorded. Each concept was presented in
three paradigms spanning two modalities (language and vision): (1) as a highlighted word
in a sentence, (2) as a highlighted word in the middle of a relevant word cloud, or (3) as a

1Our code can be found at https://github.com/ryskina/concepts-brain-llms
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picture labeled with the concept word (Fig. 1a). We introduce a semantic consistency metric
for how consistently a particular brain unit (voxel) responds to the same concept in all three
paradigms (§4.1), and identify three brain areas that show high semantic consistency (§4.2).

Next, we ask if the representations from 15 uni- and multimodal transformer LMs of differ-
ent sizes are aligned with brain responses in these areas during linguistic and conceptual
processing. Our main question is whether LM-based encoding performance correlates
with the level of semantic consistency for a given brain region; in addition, we look at the
relationship between the encoding quality and the region’s selectivity for language. Method-
ologically, we use two approaches: (1) using LM features to predict activations in these
regions (Fig. 1b), and (2) performing a representational similarity analysis (RSA) to probe the
geometric structure of concept representations in the brain and in LMs (Fig. 1c). To preface
our key results, all models show significant brain alignment in both the prediction and the
RSA analyses. Moreover, high semantic consistency correlates with high predictivity—even
in regions with weak language responses, which suggest that these areas indeed represent
non-linguistic conceptual information. Overall, our contributions are the following:

• Using an fMRI dataset of brain responses to multimodal stimuli, we define a novel
metric for measuring semantic consistency in the brain (§4.1) and use it to find brain
regions that represent concepts most consistently, irrespective of paradigm (§4.2);

• We evaluate 15 uni- and multimodal transformer models on their ability to predict
brain activations in three newly identified semantically consistent regions (§5.3)
and compare the models’ representational geometry to the brain’s (§5.4);

• We show that models’ predictive performance correlates with our metric of semantic
consistency in the brain, both across the whole brain and in the high-consistency
regions specifically, including brain regions with a low response to language (§6.1);

• We find significant representational similarity between the models and the semanti-
cally consistent brain regions and show that it further increases when both text and
image stimuli are used (§6.2).

2 Related work

LM–brain alignment A growing body of work compares representations in deep neural
network language models to brain imaging data (Karamolegkou et al., 2023; Oota et al.,
2024b; Sucholutsky et al., 2024; Tuckute et al., 2024a). Many studies adopt a brain encoding
approach, predicting brain activations from the model’s hidden states (Toneva & Wehbe,
2019; Schrimpf et al., 2021; Merlin & Toneva, 2024) or attention head outputs (Kumar et al.,
2024). Encoding studies find that best-performing LMs (Schrimpf et al., 2021; Caucheteux &
King, 2022) and LMs fine-tuned for certain NLP tasks (Oota et al., 2022a; Aw & Toneva, 2023)
tend to be more brain-aligned, and that predictivity increases with scale (Antonello et al.,
2023) and with the addition of instruction tuning (Aw et al., 2024). A complementary line of
work uses representational similarity alignment (RSA; Kriegeskorte et al., 2008) or direct
projection to compare the geometry of the model’s and the brain’s representational spaces
(Kaniuth & Hebart, 2022; Yu et al., 2024; Li et al., 2024a; Du et al., 2025). Such studies can
benefit both NLP and neuroscience: there is evidence that increasing brain alignment can
improve model performance (Toneva & Wehbe, 2019) and that models can help scientists
elicit targeted levels of neural activity (Bashivan et al., 2019; Tuckute et al., 2024b).

Recent work has explored if vision–language LMs (VLMs) are more brain-aligned than
language-only ones (Oota et al., 2022c; Du et al., 2025; Bavaresco & Fernández, 2025), with
two studies in particular using the multimodal, concept-focused Experiment 1 data from
Pereira et al. (2018) as a testbed (used also in this work). Oota et al. (2022b) perform brain
decoding, predicting LM representations of concept words from the brain responses to
stimuli in different modalities. Especially relevant to ours is the work of Bavaresco et al.
(2024): in an RSA analysis, they find that VLMs capture multimodal knowledge, leading
to higher alignment in both language and visual networks. Unlike these studies, we do
not use known brain networks as the alignment target—we identify a novel set of concept-
representing brain regions by leveraging the cross-modal nature of the dataset’s stimuli.
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Figure 1: Brain data collection process for the fMRI dataset (Pereira et al., 2018, Experiment
1) and the schematics of our two LM–brain alignment evaluations. (a) 17 participants
underwent three fMRI scan sessions, one per paradigm (sentences, pictures, or word clouds)
to record brain activity when thinking of different concepts. Each paradigm presents the 180
concepts in a different format: sentences containing the concept word, pictures presented
alongside the concept word, and word clouds with the concept word surrounded by related
terms. Example stimuli are shown; each concept is represented by 4–6 unique stimuli
per session. (b) Brain encoding (§5.3): we use the LM representation of the stimulus to
predict brain activations in a participant viewing the same stimulus. (c) Representational
similarity alignment (RSA) (§5.4): we combine all stimuli per concept to obtain a single
concept representation from the brain and from the LM. We use them to evaluate pairwise
concept dissimilarities in the LM and the brain and correlate them between the two.

Concepts in the brain How the human brain represents conceptual meaning is an open
question (Kiefer & Pulvermüller, 2012; Frisby et al., 2023), but several streams of scientific
evidence suggest that language and semantic/conceptual processing are dissociated in
the mind and brain (for details and references, see Reilly et al., 2025, Dissent #1 for event
semantics). Therefore, we propose extracting meaning representations not from the language-
selective brain regions commonly used in prior brain–LM work, but from the regions that
represent meaning independently of whether it is conveyed through text or image. While
there is no established method for localizing such regions, brain imaging studies have
used visual and linguistic stimuli in parallel to search for amodal semantic processing
(Wurm & Caramazza, 2019; Popham et al., 2021; Ivanova, 2022, Ch. 5). Similarly, we use
the multimodal, concept-matched stimuli of Pereira et al. (2018, Experiment 1) to identify
regions of interest: we propose a novel metric of how consistently a brain area responds to
particular concepts—regardless of whether the concept is shown pictorially, in the context of
related single words, or in a sentence context—and select areas where it is reliably high (§4).

Concepts in LMs While the language models’ ability to represent concepts without
grounding is subject to debate (Bender & Koller, 2020; Piantadosi & Hill, 2022), recent
work has found that LMs can learn about concepts like color from text input only (Abdou
et al., 2021). Further studies show evidence for the existence of “universal representations”,
a shared brain-aligned latent space that deep neural models converge on (Hosseini et al.,
2024; Chen & Bonner, 2024). Convergence emerges even between models trained on dif-
ferent modalities (Maniparambil et al., 2024; Li et al., 2024b), and Huh et al. (2024) argue
that models are aligning towards a shared representation of reality. Wu et al. (2025) connect
these findings to a theory of human cognition (Patterson & Ralph, 2016), showing that LMs
develop “semantic hubs” which encode shared meaning across languages and modalities.
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3 Data

We use the brain data from Experiment 1 of Pereira et al. (2018). They collected fMRI brain
recordings of 17 participants who perceived the experimental stimuli (text or images). Each
stimulus corresponded to a target concept—one of the 180 single-word labels obtained by
performing clustering on a static word embedding space (Pennington et al., 2014). The
concept words vary in part of speech (Seafood, Disturb, Willingly, Great) and range
from concrete and material (Table) to abstract (Emotion); the list of concepts is included in
the Appendix (Table 1). Each stimulus represents a concept in one of the three experimental
paradigms: as a sentence containing the concept word (sentence paradigm, or S), a word
cloud with the concept word surrounded by relevant terms (word cloud paradigm, or WC),
or an image presented alongside the concept word (picture paradigm, or P). The full dataset
contains six sentences, six images, and six spatial arrangements of the word cloud for each
concept (see Figure 6 in the Appendix).2 The concept word was always highlighted in bold,
and the participants were asked to read the text and think about the target word’s meaning
in relation to the accompanying image or context.

Each participant underwent three separate 2-hour fMRI scanning sessions, one per
paradigm, as shown in Figure 1a. In each session, they viewed 4–6 groups of 180 stimuli
(one per concept), in random order. The participant never saw the same exact stimulus more
than once: in every new group, the concept was always represented by a new sentence,
picture, or spatial configuration of the word cloud, depending on the paradigm. Each
stimulus was displayed for 3 seconds, followed by a 2-second break.

An fMRI brain recording captures the changes in blood oxygen levels (Blood Oxygenation
Level Dependent (BOLD) signal), an indirect measure of neural activity. Spatially, the brain
is discretized into 2mm-sized cubical units (voxels). To estimate the activation strength3 β in
each voxel corresponding to each stimulus, we implement a processing pipeline using the
GLMsingle toolkit (Prince et al., 2022), with additional upsampling of the BOLD signal time
series to align stimuli presentations with the temporal resolution of the scan (2s). Further
details about the collection and processing of the fMRI data are provided in Appendix A.

4 Defining and mapping semantic consistency

We use the estimated activation values per stimulus to identify which voxels in the brain
consistently respond to the same concepts, whether presented as a sentence, a picture, or
a word cloud. We propose a measure of this conceptual consistency (§4.1) and use it to
identify brain regions where significantly consistent voxels are likely to be found (§4.2).

4.1 Semantic consistency metric

We consider a voxel semantically consistent if it consistently responds strongly (or weakly)
to stimuli representing the same concept, regardless of the paradigm (e.g., if it responds
strongly to sentences, pictures, and word clouds for the concept Bird but weakly to those
for Art). Suppose that the stimuli associated with the concept ci (1 ≤ i ≤ 180) under the
paradigm Ω ∈ {S, P, WC} elicit an average response βi

Ω ∈ R in a given voxel. We then

obtain vectors
{

βi
Ω
}180

i=1 = β⃗Ω ∈ R180 and define the voxel’s semantic consistency as follows:

C =
1
3

[
r
(

β⃗S, β⃗P

)
+ r

(
β⃗S, β⃗WC

)
+ r

(
β⃗WC, β⃗P

)]
(1)

where r denotes the Pearson correlation coefficient (Fig. 2a). To apply this measure to a set
of voxels, we average the response values β⃗Ω over voxels before computing the correlations.

2Notably, the words in each concept’s word cloud remain the same in each of the six WC stimuli.
3We use the words ‘activation’ and ‘response’ interchangeably to denote the BOLD percent signal

change in response to a stimulus.
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Figure 2: Semantic consistency and its spatial distribution. (a) The schematic of the com-
putation of the semantic consistency measure C. Given a brain activation vector β⃗ for each
of the experimental paradigms (sentences, pictures, and word clouds) over the 180 concepts,
we compute Pearson correlation coefficients between each pair of activation vectors and
average them. (b) A probabilistic semantic consistency map of the left hemisphere. Each
point shows the % of participants whose brain displays significant semantic consistency in
that voxel, demonstrating where, on average, the semantically consistent brain areas are
located. (c) Regions of interest (ROIs) that emerge after overlaying the probabilistic map in
(b) with an anatomical segmentation (Glasser et al., 2016).

4.2 Brain regions of interest

Brain representations for model–brain alignment are typically extracted from regions en-
gaged by the input modality, e.g., the visual cortex for visual stimuli or the language network
for linguistic ones. Since we aim to explore the effect of representation consistency across
paradigms, we define our own brain regions of interest (ROIs) in a modality-agnostic way.

First, in each participant’s brain we find all voxels whose semantic consistency C is reliably
above chance. To account for noise in fMRI recordings, we select those via two independent
permutation tests (shuffling β⃗Ω and recomputing C) on two separate halves of the data, and
select voxels with p < 0.05 in both permutation tests. A probabilistic map of such voxels
across all participants is shown in Figure 2b: the voxels that show significant C in a larger
percentage of participants tend to cluster in certain areas of the left hemisphere. For further
details on this step, including the whole-brain probabilistic map, see Appendix B.1.

We define the boundaries of these areas by overlaying this probabilistic map with a popular
anatomical segmentation of the brain cortex (the HCP-MMP1.0 atlas; Glasser et al., 2016),
which divides each hemisphere into 180 functionally and anatomically distinct areas. After
we threshold contiguous clusters of areas by size and by likelihood of high-consistency
voxels (full procedure described in Appendix B.2), the three regions of interest (ROIs) are
left, marked as ROI 1, 2, and 3 in Figure 2c. ROI 2, located in the inferior frontal lobe, and
especially ROI 1, which covers parts of the temporal lobe, include areas that are considered
to be language-relevant in prior work on brain–LM alignment (Oota et al., 2023; 2024a).
ROI 3 contains ventral areas involved in visual processing (Rolls, 2023), which have been
used for benchmarking representational alignment in computer vision models (Kaniuth &
Hebart, 2022). The full anatomical breakdown of each ROI can be found in Table 2 (§B.2).

5 Brain–LM alignment

We now measure how well brain responses to stimuli in the identified ROIs (Fig. 2c) align
with the LM representations of the same stimuli. This section lists the models used in this
study (§5.1), outlines how LM representations are extracted (§5.2), and describes our two
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methods: brain encoding (predicting brain signal from LM representations; §5.3, Fig. 1b)
and RSA (comparing the structure of the representational spaces; §5.4, Fig. 1c).

5.1 Models

5.1.1 Language-only models

We experiment with a range of open-weights transformer (Vaswani et al., 2017) LMs from
three different series: GPT-2 (Radford et al., 2018; 2019), Qwen-2.5 (Bai et al., 2023a; Yang
et al., 2024a;b), and Llama-based Vicuna-1.5 (Chiang et al., 2023; Zheng et al., 2024).

GPT-2 is a series of autoregressive transformer models trained on English text. GPT-2
models are commonly used in brain–model alignment studies and have demonstrated high
brain encoding performance (Schrimpf et al., 2021; Tuckute et al., 2024b). We evaluate the
small, medium, large, and XL models in this architecture.

Qwen2.5 is a family of large multilingual models pre-trained on a large dataset with a focus
on knowledge, coding, and mathematics (Yang et al., 2024b). Both the base pre-trained
models and their instruction-tuned version are released; we evaluate the 1.5B-, 3B-, and
7B-parameter models in both versions.

Vicuna-1.5 is a version of the Llama-2 model (Touvron et al., 2023) fine-tuned on user–model
conversations from ShareGPT. We use the version of Vicuna-1.5 with 7B parameters.

5.1.2 Vision-language models

To incorporate the visual data used in the picture paradigm, we also experiment with FLAVA
(Singh et al., 2022), LLaVA-1.5 (Liu et al., 2024; 2023), and Qwen2.5-VL (Bai et al., 2023b;
Wang et al., 2024; Bai et al., 2025) models.

FLAVA is a multimodal model trained to align the text and image representations from
two separate ViT encoders (Dosovitskiy et al., 2021) via an extra transformer multimodal
encoder. While all other models we consider are autoregressive, FLAVA’s encoders are
trained to optimize the masked modeling objective.

LLaVA-1.5 is a general-purpose visual and language understanding model. It is based on
the Vicuna LM and additionally trained to take in the outputs of a visual encoder (CLIP;
Radford et al., 2021), projected into the shared representation space through an MLP. We
use the 7B version of this model in our experiments.

Qwen2.5-VL is a series of large multimodal models (based on Qwen2.5) optimized for visual
understanding, including video comprehension, document parsing, and multilingual text
recognition in images. We use the Qwen2.5-VL models with 3B and 7B parameters.

5.2 LM representations

To get one d-dimensional vector per stimulus (inputted into an LM as per §C.2), we extract
hidden states from all model layers and compare multiple pooling methods over the tokens
in each image/sentence. For each layer, we take either the last-token hidden state or the
mean hidden state over tokens; for FLAVA, we additionally consider the first-token ([CLS])
hidden state. FLAVA also uses independent unimodal encoders, so for multimodal inputs
(P) we use their averaged hidden states as well as the multimodal fusion encoder output.

5.3 Experiment 1: Brain encoding

In the brain encoding experiment, we fit a regression model that predicts a scalar activation
value from a d-dimensional vector representation of a stimulus (Fig. 1b). Following Toneva
& Wehbe (2019) and Tuckute et al. (2024b), we add a ridge penalty since the number of
predictors (d) can be quite large. The regression weights are determined as:

ˆ⃗w = arg min
w⃗∈Rd

∥y⃗ − Xw⃗∥2
2 + α∥w⃗∥2

2 (2)

6
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where X ∈ Rn×d is the matrix of LM representations of the n stimuli seen by the participant
(720 ≤ n ≤ 1080) and y⃗ ∈ Rn is the vector of the corresponding brain activations. The quality
of fit is evaluated as the Pearson correlation coefficient between the vector of predicted brain
responses ˆ⃗y = X ˆ⃗w and the ground truth activations y⃗. To obtain an unbiased estimate of this
correlation, we perform five-fold cross-validation, fitting the regression model on 80% of the
stimulus–activation pairs at a time and measuring the correlation on the held-out 20%; the
final estimate is averaged over the five folds. We report the performance only for the layer
and token pooling (§5.2) that yield the best predictivity r( ˆ⃗y, y⃗) for the average participant’s
response in a given brain region, across all folds (§D.3). Following Tuckute et al. (2024b), we
tune the regularization hyperparameter α ∈ {10−30, . . . , 1028, 1029} independently for each
fold using leave-one-out cross-validation on the training portion (with scikit-learn; §C.1).

5.4 Experiment 2: Representational similarity alignment

To further explore differences among the models, we conduct an experiment where we
measure the Representational Similarity Alignment (RSA; Kriegeskorte et al., 2008) between
each model and each of the selected brain regions. RSA, which compares the pairwise input
representation distances in the two spaces (Fig. 1c), is frequently used to evaluate brain–
model similarity (Oota et al., 2024b). We focus on the concept representations, averaging the
vectors for all sentences, pictures, and word clouds to obtain one model (per-layer) vector
x⃗i ∈ Rd and one brain activation vector b⃗i per concept ci, 1 ≤ i ≤ 180. The elements of b⃗i

are responses to ci in each voxel in a chosen brain region A: b⃗i = {βi
j}

|A|
j=1. We compute

two 180 × 180 matrices of pairwise Pearson correlation distances between these vectors:
1 − r(x⃗i, x⃗j) and 1 − r(⃗bi, b⃗j). Finally, we measure the Spearman correlation between the
lower triangular portions of these matrices to evaluate how similarly this brain region and
this model layer represent the 180 concepts. As before, we repeat this for each model layer
and token pooling method and report only the results for the best setting per model.

5.5 Neural metrics

We investigate how LM–brain alignment correlates with two neural measures: (1) semantic
consistency of a brain area (as described in §4.1) and (2) the selectivity of this area for
language processing, defined as the response to well-formed sentences compared to a per-
ceptually matched control condition. Specifically, we leveraged data from an independent
language localizer task (Fedorenko et al., 2010) where brain activitation is compared between
two types of stimuli: English sentences and unconnected sequences of non-words (e.g.,
REDENTION ZOOD CRE...). The “sentences > non-words” contrast has been shown to reliably
identify areas of the brain that are engaged in linguistic processing but not other functions
(Fedorenko et al., 2011; Benn et al., 2023; Chen et al., 2023; see Fedorenko et al., 2024 for a
review). We quantify the language selectivity measure as the difference between a voxel’s
activations in the two conditions (∆βSentences,Non-words) separately in each participant.

6 Results

6.1 More semantically consistent voxels are better predicted by LMs

Brain encoding experiments measure LM predictivity, i.e., the correlation between the voxel
activations predicted from the LM representations and the ground truth activations (§5.3).
For the sentence and picture paradigms, we predict the brain activations for each stimulus
individually (n=720–1080 stimuli per participant), but average the brain activations for word
clouds since they contain the same words for the same concept (n=180). This section reports
all results averaged over the appropriate models (all models for S and WC paradigms, only
vision-language models for P) since we did not see strong differences between individual
models (individual plots included in Appendix D.4; see §7 for discussion).

First, we verify that semantic consistency influences predictivity across the whole brain
cortex. Figure 3 shows the mean (over LMs and participants) predictivity across the 360
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Figure 3: Predictivity vs. semantic consistency in Glasser et al. (2016) anatomical areas
(both hemispheres). Each point corresponds to one area, and the areas that fall in the
chosen semantically consistent ROIs (§4.2) are marked by shape and color. Error bars show
standard error over participants. All paradigms show a correlation between predictivity
and semantic consistency, though for pictures it is skewed by visual cortex areas (circled).
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Figure 4: Mean LM predictivity by quartile for each ROI and paradigm. Columns 1, 3, and
5 show how predictivity in each ROI changes across voxel quartiles by semantic consistency,
with each red line corresponding to one language selectivity quartile. Columns 2, 4, and
6 show how predictivity changes across voxel quartiles by language selectivity, with each
blue line corresponding to one semantic consistency quartile. The thickness of the line
corresponds to the quartile (thicker=higher), and the error intervals show standard error
across participants. While ROI 1 and ROI 2 (rows 1 and 2) show a positive correlation with
both the semantic consistency and the language selectivity (albeit to a lesser extent), the
predictivity in the ventral ROI 3 does not correlate with the language selectivity.

anatomical areas (180 in each hemisphere; Glasser et al., 2016) for each of the three paradigms.
We see a strong positive correlation between the semantic consistency of an area4 and how
well the activation in it can be predicted by LMs (r[S] = 0.79, r[WC] = 0.74). The correlation
is lower for the picture paradigm (r[P] = 0.17) because of a cluster of visual cortex areas
(circled in yellow): they encode images (hence the high VLM alignment) but not necessarily
concepts. Taken together, these findings show that a brain region is better predicted if it
responds more consistently to concepts, irrespective of modality and paradigm.

Second, we evaluate how the brain encoding performance in our three ROIs correlates
with the two brain metrics of interest (§5.5). Each participant’s brain voxels in each ROI
are divided into bins (quartiles) by either semantic consistency (1 ≤ bC ≤ 4) or language
selectivity (1 ≤ bL ≤ 4), resulting in 16 (bC, bL) bins total. Each plot in Figure 4 keeps one
of these metrics fixed while varying the other: for example, in columns 1, 3, and 5 each red

4Measured as probability of significantly consistent voxels (§B.1) to match §4.2. Overall trends also
hold when using the the raw value of C (§D.1) or adjusting for inter-participant noise ceiling (§D.2).
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Figure 5: Concept-level RSA for each LM and brain ROI. RSA quantifies correlations
between pairwise concept distance matrices. Each concept’s representations are averaged
over stimuli (sentences and word clouds for text-only condition, all paradigms for text +
image). Shuffled baseline included for comparison. Error bars show SEM across participants.

line corresponds to all voxels of the same bL, while the points on the line represent voxels
in (1, bL), (2, bL), (3, bL), and (4, bL) respectively. Similarly, the plots in columns 2, 4, and
6 group lines by bC, and the x-axis steps correspond to bL ∈ {1, 2, 3, 4} respectively. The
y-axis in each plot shows the predictivity, averaged over participants and LMs.

In all ROIs and paradigms, predictivity rises monotonically across semantic consistency
quartiles bC while bL is held fixed (red lines in columns 1, 3, 5; mean r = 0.40 ± 0.01). The
correlation with the language quartile bL when controlling for bC is less clear: while there is
some increase in ROI 1 and 2 for text-based paradigms (blue lines in rows 1, 2, columns 2, 6;
mean r = 0.26 ± 0.04), ROI 3 (row 3, columns 2, 4, 6; mean r = 0.01 ± 0.02) and the picture
paradigm overall (column 4; mean r = −0.01 ± 0.04) display no such dependency. ROI 3,
involved in visual but not language processing, demonstrates that semantic consistency
drives predictivity even decoupled from language: rC = 0.33 ± 0.03, rL = 0.01 ± 0.02.

6.2 LMs and VLMs share representational geometry with semantic brain regions

Figure 5 shows the RSA correlation between each model and each ROI, reported for the
most aligned layer in each model. We additionally include a baseline in which we shuffle
the brain’s concept representations {⃗bi}180

i=1, so that the pairwise concept distances are not
matched between the brain and the model; each baseline is reported for its own best layer.

In the three ROIs associated with high semantic consistency (rows in Figure 5), the alignment
in all models is significantly higher than the baseline. We do not see a clear trend for model
size (within the GPT-2 or Qwen2.5 families; cf. Schrimpf et al., 2021) or a noticeable effect of
instruction tuning (between Qwen2.5 and Qwen2.5-Instruct models of the same size; cf. Aw
et al., 2024). While language-only models (left set of bars) only represent the textual stimuli
(S and WC), for vision-language models (right set of bars) we compare the same setting with
an all-paradigm average. The text-only performance is comparable in VLMs and their base
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LM counterparts (LLaVA vs. Vicuna, Qwen2.5-VL vs. Qwen2.5). Interestingly, the addition
of multimodal stimuli increases alignment, most notably in the ventrotemporal ROI 3—a
region adjacent to areas associated with high-level vision (e.g., Kanwisher et al., 1997) as
well as the visual word form area and the basal language areas (Li et al., 2024c).

7 Discussion and conclusion

We evaluated model–brain alignment for 15 transformer language and vision-language
models in a brain encoding experiment. To do so, we introduced a new metric that identifies
brain voxels with consistent responses to conceptual content across different paradigms,
based on fMRI data from multimodal stimuli. We show that the more concept-consistent
the voxels are, the better they are predicted by LM representations. In line with prior work
(Ayesh et al., 2024), we also find that LM predictivity is correlated with language selectivity
in the regions overlapping with the canonical language areas of Fedorenko et al. (superior
temporal ROI 1) or adjacent to them (inferior frontal ROI 2).

Aiming to extract modality-independent conceptual representations of the stimuli from the
participant’s brain (rather than purely linguistic/visual ones), we target a novel set of ROIs
in our alignment experiments. We focus on three brain regions that show the most consistent
preferences for certain concepts, regardless of presentation paradigm (as measured by our
proposed semantic consistency metric). These regions are distinct from the established brain
networks typically used to evaluate LM–brain alignment, such as the language network
(Fedorenko et al. 2010; evidenced by two of the ROIs showing little to no response to the
language localizer; see §B.3). The temporal ROI 1 overlaps both with the language network
and with the areas where evidence of amodal semantic processing was found previously
(Wurm & Caramazza, 2019; Popham et al., 2021; Ivanova, 2022, Ch. 5)—we hypothesize that
ROI 1 may serve as a gateway between the language system and the more abstract semantic
areas. For consistency with prior work, we include a comparison of the brain encoding
performance in our ROIs and in the language network parcels (§D.5).

We do not see strong differences in brain encoding performance between individual models.
We attribute that to the flexibility of our brain encoding pipeline, based on that of Tuckute
et al. (2024b): it not only chooses the most predictive layer for each model, ROI, and
paradigm, but also tunes the regularization hyperparameter individually for each cross-
validation fold at inference time. While it yields the best performance for each model, it
obscures the differences between them, so we perform an additional comparison using RSA.
We find significant alignment between the representational spaces of all models and the
semantically consistent brain regions, but do not observe the trends noted in prior work: in
our experiment, RSA alignment does not increase from smaller to larger models in the same
architecture (Schrimpf et al., 2021) or with additional instruction tuning (Aw et al., 2024).

Past work has found that responses to images in high-level visual cortical areas—which
overlap with the ventral ROI 3—are successfully predicted from LM embeddings of their
descriptions (Doerig et al., 2022). Conwell et al. (2023) show that much of this alignment
is explained by the concepts (objects and agents) present in the image. Together with our
consistency evaluation, these results suggest that certain conceptual information is retained
in these regions—and stronger LM alignment with semantically consistent brain areas can
be viewed as evidence for these models’ ability to capture cross-modal conceptual meaning.
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A fMRI data

This section contains additional details on the fMRI dataset used in this study (Pereira et al.,
2018, Experiment 1), summarized from the original publication, as well as a description
of our alternative processing choices. The stimuli and the fMRI data processed by Pereira
et al.’s original processing pipeline are published or linked at https://osf.io/crwz7/.

Ability Cook Food Music Sin
Accomplished Counting Garbage Nation Skin

Angry Crazy Gold News Smart
Apartment Damage Great Noise Smiling
Applause Dance Gun Obligation Solution
Argument Dangerous Hair Pain Soul

Argumentatively Deceive Help Personality Sound
Art Dedication Hurting Philosophy Spoke

Attitude Deliberately Ignorance Picture Star
Bag Delivery Illness Pig Student
Ball Dessert Impress Plan Stupid
Bar Device Invention Plant Successful
Bear Dig Investigation Play Sugar
Beat Dinner Invisible Pleasure Suspect
Bed Disease Job Poor Table
Beer Dissolve Jungle Prison Taste
Big Disturb Kindness Professional Team
Bird Do King Protection Texture
Blood Doctor Lady Quality Time
Body Dog Land Reaction Tool
Brain Dressing Laugh Read Toy
Broken Driver Law Relationship Tree

Building Economy Left Religious Trial
Burn Election Level Residence Tried

Business Electron Liar Road Typical
Camera Elegance Light Sad Unaware

Carefully Emotion Magic Science Usable
Challenge Emotionally Marriage Seafood Useless
Charity Engine Material Sell Vacation
Charming Event Mathematical Sew War
Clothes Experiment Mechanism Sexy Wash
Cockroach Extremely Medication Shape Weak

Code Feeling Money Ship Wear
Collection Fight Mountain Show Weather
Computer Fish Movement Sign Willingly

Construction Flow Movie Silly Word

Table 1: The 180 concept words of Pereira et al. (2018). Each word is a label of a cluster of
words obtained by performing spectral clustering over a space of GloVe embeddings.
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A.1 Concepts

The full list of 180 concepts used in the study is provided in Table 1. Pereira et al. (2018)
perform spectral clustering over a pre-trained English GloVe embedding space (Pennington
et al., 2014) and manually label the obtained clusters. The list includes 128 nouns, 22 verbs,
29 adjectives and adverbs, and 1 function word.

A.2 Stimuli

Figure 6 shows example stimuli for two of the 180 concepts under each paradigm.

SentencesSentences

Word CloudsPictures

The bird flew around the cage. 
The nest was just big enough for the bird.  
The only bird she can see is the parrot.  

The bird poked its head out of the hatch.  
The bird holds the worm in its beak. 
The bird preened itself for mating. 

Concept: Bird

… …

Sentences

Word CloudsPictures

broken 

mess

crooked

bad

failing

ruined

The broken mirror went missing. 
The broken leg made the table unstable.  

She dangerously teeters on the broken chair.  
The disorganized room is full of broken things.  

The computer was hopelessly broken. 
The door hung crooked after being broken. 

Concept 180: Broken

Word CloudsPictures

help

preserve

expand

improve
replace

heal

You can't recover without a doctor to help you. 
Stimulate the area to help it wake up.  

You will stabilize if you let him help you. 
Someone had to help her replace the engine. 

Reinforce the idea that help is good. 
Please clarify how I can help.

Concept: Help

bird beak

nest

flock

winged

mating

broken 
mess

crooked

bad failing

ruined

Bi
rd

Br
ok
en

Figure 6: Example stimuli for two of the concepts in the Pereira et al. (2018) Experiment 1
dataset. The dataset includes six sentences, six images, and six spatial configurations of the
same word cloud. The concept word is always bolded in the sentences and word clouds,
and it is also added to every image in the picture paradigm. The participants were asked to
think about the concept in relation to the accompanying context or image.

A.3 Participants

It should be noted that the set of participants considered in this study (M01–M17) is not
identical to that of Pereira et al. (2018): we exclude one participant scanned at Princeton
(P01) but include the two novice subjects (M11, M12) that were excluded from the original
analyses. The 17 participants (mean age 26.1, range 20–48; 10 men, 7 women; all native
speakers of English; 14 right-handed, two left-handed, one ambidextrous) received payment
for their participation, and gave informed consent in accordance with the requirements of
the Committee on the Use of Humans as Experimental Subjects.

A.4 fMRI protocol

fMRI scanning was performed using a whole-body 3-Tesla Siemens Trio scanner with a
32-channel head coil. Each two-hour scan session included 4–6 groups of 180 stimuli (one
per concept), with each group randomly split into two runs (90+90 concepts). Each stimulus
was presented for 3 seconds followed by a 2-second fixation period, with additional 10-
second fixation periods at the beginning, middle, and end of each run. The scan repetition
time (TR) was set to 2 seconds.

A.5 fMRI data processing

The responses to each stimulus were estimated using a general linear model (GLM) with
additional denoising and regularization, implemented using the GLMsingle (Prince et al.,
2022) Python toolkit (version 0.0.1).5 Each stimulus presentation was modeled with a boxcar
function convolved with the canonical haemodynamic response (HRF). The time-series data
is upsampled using PCHIP interpolation to TR=1s (from TR=2s in the original data from

5https://github.com/cvnlab/GLMsingle

20

https://github.com/cvnlab/GLMsingle


Published as a conference paper at COLM 2025

Pereira et al.) in order to align the duration of the stimulus presentations (3s) with the TR
boundaries. We set the following GLMsingle hyperparameters: number of GLMdenoise
regressors = 5; fractional regularization level = 0.05; default values for the rest.

B Semantic consistency ROIs

B.1 Statistically significant voxels

We determine the statistical significance of a voxel’s semantic consistency using independent
permutation tests performed on two non-overlapping halves of the data.

First, we partition the stimuli set into two halves: for example, for a given concept (e.g.,
Ability) and paradigm (e.g., sentences), sentences 1, 2, and 5 are allocated to the first half
and sentences 3, 4, and 6 to the second half. Since for certain concept–paradigm pairs there
are occasional participants who have only been presented 4 stimuli out of the possible 6, we
partition the stimuli in a way that would result in the most even data split between the two
halves: specifically, we choose a split that minimizes the number of cases where a subject
would have seen three stimuli from one half but only one from the other half.

We then perform a permutation test on the brain activations for each half of the stimuli.
For each paradigm Ω ∈ {S, P, WC} we consider a voxel’s response vector β⃗Ω ∈ R180, in
which every element represents the strength of a response to a particular concept (computed
based on the appropriate half of the stimuli only), always in the same order. We shuffle
the elements of β⃗Ω for each paradigm Ω independently 1,000 times. Let ˜⃗β(k)

Ω denote the
vector resulting from the k−th shuffling (1 ≤ k ≤ 1000); we can compute the “shuffled”
correlation value C̃(k) by substituting ˜⃗β(k)

Ω for β⃗Ω for each paradigm Ω in equation 1. We
can then compute the one-sided p−value of the permutation test as p = ∑1000

k=1 I[C > C̃(k)],
where I is an indicator function.

Doing so for every voxel in every participant’s brain yields two p-values for voxel. We
select for each participant the set of voxels that were statistically significant on both halves
of the stimuli (i.e., both p-values were below 0.05) and convert it to a binarized 3D map (1
in statistically significant voxels, 0 otherwise). Finally, we average the obtained binary map
over participants to obtain a probabilistic map of semantically consistent voxels, where a
value corresponding to each voxel represents the percentage of participants in whose brain
this voxel had statistically significant semantic consistency (Fig. 7).

right

left

lateral medial

30%

15%

0%

23%

8%

Figure 7: Probabilistic map of voxels with statistically significant semantic consistency
across all participants. Each voxel’s value shows the % of the participants in whose brain
this voxel has p < 0.05 in both permutation tests.

21



Published as a conference paper at COLM 2025

ROI Location # voxels Areas, named per Glasser et al. (2016)

ROI 1 Superior temporal 975

Auditory 5 Complex (A5)
Area STSd posterior (STSdp)
Area Temporo-Parieto-Occipital Junction 1
(TPOJ1)
Area Temporo-Parieto-Occipital Junction 2
(TPOJ2)

ROI 2 Inferior frontal 675
Area IFSa (IFSa)
Area 45 (45)
Area Frontal Opercular 5 (FOP5)

ROI 3 Ventral temporal 646 Area TE2 posterior (TE2p)
Area PH (PH)

Table 2: The breakdown of the three identified left-hemisphere regions of interest (ROIs),
shown in Figure 2c. The individual area definitions follow Glasser et al. (2016).

B.2 Defining ROIs

0%

15%

10%

5%

right

left

lateral medial

Figure 8: The probabilistic map in Figure 7, averaged by anatomical area as defined by
Glasser et al. (2016). Thresholding these areas by probability, dividing the remaining ones
into contiguous clusters, and filtering by size results in the three ROIs shown in Figure 2c.

We use the probabilistic map in Figure 7 to define the boundaries of our regions of interest
(ROIs). We use the anatomical parcellation of Glasser et al., 2016 (in volumetric projection
by Horn, 2016) and average the values of the probabilistic map over all voxels in each
anatomical area. The result is shown in Figure 8. After discarding all Glasser areas in which
the value is below 5.9% (i.e., 1/17, where 17 is the number of participants), we are left with
19 anatomical areas forming 10 contiguous regions of the brain cortex; of these regions lie in
the left hemisphere. Finally, we filter these 10 regions by size (>600 voxels), which leaves
the three left-hemisphere ROIs shown in Figure 2c. The size and anatomical makeup of each
ROI is listed in Table 2.

B.3 Language response in semantic consistency ROIs

Mean language selectivity (measured per §5.5) for each ROI is reported in Table 3.
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ROI ∆βSentences,Non-words

ROI 1 0.59 ± 0.06
ROI 2 0.13 ± 0.07
ROI 3 −0.16 ± 0.04

Table 3: Mean (over voxels and participants) language selectivity in the semantic consis-
tency ROIs. The value is measured as the effect size for the sentences vs. non-words contrast
of Fedorenko et al.’s (2010) language localizer. Standard error is shown over participants.

C Models and methods

C.1 Sources and implementation

All alignment experiments are implemented using the numpy (Harris et al., 2020), scipy
(Virtanen et al., 2020), scikit-learn (Pedregosa et al., 2011), and pandas (McKinney, 2010)
libraries. For brain encoding, we use the RidgeCV class in scikit-learn to automatically
tune the regularization hyperparameter α via leave-one-out cross-validation.

We download all pretrained models from the HuggingFace Hub.6 Table 4 includes the links
to the model repositories on HuggingFace. All experiments involving LMs are performed
using PyTorch (Paszke et al., 2019) and the transformers Python library (Wolf et al., 2020).

Model HuggingFace ID Parameters

GPT-2 openai-community/gpt2 124M
GPT-2 Medium openai-community/gpt2-medium 355M
GPT-2 Large openai-community/gpt2-large 774M
GPT-2 XL openai-community/gpt2-xl 1.6B
FLAVA facebook/flava-full 241M
Vicuna-1.5-7B lmsys/vicuna-7b-v1.5 7B
LLaVA-1.5-7B llava-hf/llava-1.5-7b-hf 7B
Qwen2.5-1.5B Qwen/Qwen2.5-1.5B 1.5B
Qwen2.5-1.5B-Instruct Qwen/Qwen2.5-1.5B-Instruct 1.5B
Qwen2.5-3B Qwen/Qwen2.5-3B 3B
Qwen2.5-3B-Instruct Qwen/Qwen2.5-3B-Instruct 3B
Qwen2.5-VL-3B-Instruct Qwen/Qwen2.5-VL-3B-Instruct 3B
Qwen2.5-7B Qwen/Qwen2.5-7B 7B
Qwen2.5-7B-Instruct Qwen/Qwen2.5-7B-Instruct 7B
Qwen2.5-VL-7B-Instruct Qwen/Qwen2.5-VL-7B-Instruct 7B

Table 4: Pretrained language models used in this study. We provide the HuggingFace
identifier and a hyperlink for downloading each model’s weights.

C.2 Stimuli input format

To input the stimuli from each paradigm (Fig. 6) into the models, we format them as follows:

• Sentences are inputted as-is: The bird flew around the cage.

• Word clouds are presented as a sequence of space-separated words, with the concept
word given first: bird nest flock mating beak winged.
Since all word clouds for the same concept contain the same words, we use a single
sequence to represent them all.

6https://huggingface.co/
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• For picture + concept word inputs we add special VLM image tokens where needed:
<image> Bird (LLaVA format) or <|vision start|><|image pad|><|vision end|>
Bird (Qwen-VL format).

D Brain encoding performance

D.1 Whole-brain correlation with semantic consistency

Figure 3 in §6.1 shows how mean LM predictivity and semantic consistency correlate across
anatomical areas. The semantic consistency of an area is measured by (1) obtaining the
probabilistic map of reliably consistent voxels in that area across participants (§B.1, Fig. 7)
and (2) averaging it over all voxels in an area (Fig. 8).

However, since our main brain encoding experiment (Fig. 4) uses the raw value of C rather
than the probabilistic map to group voxels, we rerun this analysis with C as the measure
of semantic consistency. As can be expected, these two consistency measures are highly
correlated (r = 0.83). The result is shown in Figure 9.

0.00 0.05 0.10
Semantic consistency

0.0

0.1

0.2

0.3

M
ea

n 
LM

 p
re

dic
tiv

ity

Sentence paradigm

0.00 0.05 0.10
Semantic consistency

0.0

0.1

0.2

0.3

M
ea

n 
LM

 p
re

dic
tiv

ity

Picture paradigm

0.00 0.05 0.10
Semantic consistency

0.0

0.1

0.2

0.3
M

ea
n 

LM
 p

re
dic

tiv
ity

Word cloud paradigm
Glasser areas

in ROI 1
in ROI 2
in ROI 3
other

Figure 9: LM predictivity per Glasser et al. (2016) area, with semantic consistency (x-
axis) showing the mean value of the metric C. The Pearson correlations between C and
predictivity for each paradigm are: r[S] = 0.80, r[P] = 0.22, r[WC] = 0.75.

D.2 Inter-participant noise ceiling

In the whole-brain encoding experiment (Fig. 3), we correlate LM predictivity in each
anatomical area (defined per Glasser et al., 2016) with its level of semantic consistency.
However, the higher predictivity might be not only due to increased brain–LM alignment:
brain activations in some areas might be better predicted than in others because the signal
there is simply less noisy. One standard approach to estimate a noise ceiling is to quantify
the variability between the responses to the same stimulus in a given area of the same
participant’s brain (repeated trials). In our case, no participant sees the same stimulus more
than once, i.e., trials are never repeated; instead, we compute the inter-participant noise
ceiling, estimating the variability in responses to the same stimulus across all participants.
We follow the procedure described by Tuckute et al. (2024b, section SI 5) to obtain an
across-participant “noise ceiling”.

When we divide the mean LM predictivity in each area by its estimated noise ceil-
ing, we find that the correlations with the area’s semantic consistency (mean proba-
bility of the area’s voxels having statistically significant consistency) remain positive:
r[S] = 0.46, r[P] = 0.02, r[WC] = 0.63. Although other noise ceiling estimation approaches
could offer additional insights (though they may not be feasible given the experimental
design), these results confirm that our key findings hold even after accounting for cross-
participant reliability.
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D.3 Brain encoding across model layers

Figures 10 and 11 show how well the the participant-average brain activations in the chosen
ROIs can be predicted from the representations extracted from different model layers (with
mean and last-token pooling respectively). For each model, we choose the layer and the
token pooling method that together yield the best performance, and use this setting for
all other experiments in this paper. The middle layers are typically the most predictive,
consistent with the observations of Caucheteux & King (2022) and Tuckute et al. (2024b).

The mean-pooled embedding layer (layer 0 in Fig. 10) serves as a baseline: it shows how well
brain activations can be predicted from the non-contextual embeddings of the individual
tokens. As expected, the predictivity at layer 0 is lower for sentences (where the syntactic
information is important for reconstructing the meaning), but less so for word clouds or
pictures (since layer 0 in VLMs includes the projected features from the vision encoder).
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Figure 10: Brain encoding performance by LM layer (with mean pooling over tokens).
The target brain region (ROI) activations are averaged over all participants (§5.3). The error
bars show standard error of the mean over the five cross-validation folds.
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Figure 11: Brain encoding performance by LM layer (with last token pooling). The target
brain region (ROI) activations are averaged over all participants (§5.3). The error bars show
standard error of the mean over the five cross-validation folds.

D.4 Brain encoding by voxel quartile

Figure 12 shows the average (over models and participants) predictivity values per semantic
consistency or language selectivity quartile (also shown in Figure 4), visualized as a heatmap.

Figures 15–29 show how each LM’s predictivity varies by language selectivity and semantic
consistency quartile. Odd-numbered columns show how predictivity in each ROI changes
across voxel quartiles by language selectivity, with each line corresponding to one semantic
consistency quartile. Even-numbered columns show how predictivity changes across
voxel quartiles by semantic consistency, with each line corresponding to one language
selectivity quartile. The thickness of the line corresponds to the quartile (thicker=higher),
and the error intervals show standard error across participants. Each plot is averaged
over participants; average over all models is shown in Figure 4. The correlations with
both semantic consistency (C) and language selectivity (L) for each ROI are reported in the
caption (averaged over paradigms).
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Figure 12: LM predictivity by quartile for each ROI and paradigm, averaged over all
models. The values shown reflect the mean correlation the ground-truth brain activations
and the ones predicted from LM representations. In each heatmap, the x and y axes
correspond to quartiles by language selectivity (sentences vs. non-words contrast; see §5.5)
and by semantic consistency C respectively. Each cell of the grid shows the predictivity
level on all voxels in a ROI that fall at the intersection of the given language selectivity and
consistency quartiles. In ROI 1 (top row) and ROI 2 (middle row), the predictivity correlates
with both language selectivity and semantic consistency, although the former is weaker for
the word cloud (left column) and picture (middle column) paradigms. In ROI 3 (bottom
row), only semantic consistency correlates with predictivity.
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D.5 Brain encoding in the language network

For comparison with prior works on LM–brain alignment that target the brain’s language
network, we conduct an additional analysis comparing the brain encoding performance in
the left-hemisphere regions often engaged by linguistic processing (Fedorenko et al., 2010;
Mahowald & Fedorenko, 2016; Lipkin et al., 2022) with that in the semantic consistency
ROIs identified in this paper. We use the six language parcels (located in the inferior frontal
gyrus, orbital inferior frontal gyrus, middle frontal gyrus, anterior temporal lobe, posterior
temporal lobe, and angular gyrus) created from a probabilistic overlap map from 220
participants.7 Since the semantic consistency ROIs are defined as sets of Glasser et al. (2016)
anatomical areas, we also identify all Glasser et al. (2016) areas that overlap substantially
(by over 25% of an area’s voxels) with any of the language parcels. If an area overlaps with
more than one language parcel, we assign it to the parcel with the highest overlap. The
brain encoding results are presented in Figure 13, reported by Glasser et al. (2016) area.

E RSA performance

To complement the analysis in §6.2, we conduct an additional RSA experiment using only the
voxels with statistically significant semantic consistency (§B.1). This dramatically reduces
the number of voxels to ∼10–20 per ROI in most participants. The results (mean and SEM
across participants) are shown in Figure 14. While the overall trends remain the same
(see Figure 5), the VLM–ROI alignment gain from adding the picture paradigm data has
decreased in the non-visual ROIs (1 and 2).

7Downloaded from https://evlab.squarespace.com/s/allParcels-language-SN220.nii
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Figure 13: Brain encoding performance in the left-hemisphere language network parcels
and the semantic consistency ROIs. For details, see Appendix D.5. LM predictivity is
averaged over all models and participants. Each data point displayed corresponds to an
anatomical area of Glasser et al. (2016). The language parcels from prior work are shown on
the left of the dashed line, and the semantic consistency ROIs are shown on the right. The
Glasser et al. (2016) areas on the left are chosen by overlap (> 25%) with language parcels.
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Figure 14: RSA scores for each model when using only voxels with significant semantic
consistency (§B.1). For more details, see Appendix E and Figure 5. The three conditions
correspond to using all three paradigms (text + images), using only sentences and word
clouds (text only), and the baseline where the concepts are shuffled on one of the sides before
computing correlations (§6.2). The results are consistent with those from using all voxels
in each ROI (Figure 5), although the gains from adding images are reduced for non-visual
ROIs 1 and 2. Error bars show standard error over participants.
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Figure 15: GPT-2 predictivity by voxel quartile. ROI 1: rC = 0.41 ± 0.02, rL = 0.24 ± 0.07.
ROI 2: rC = 0.38 ± 0.02, rL = 0.15 ± 0.03. ROI 3: rC = 0.27 ± 0.02, rL = 0.01 ± 0.03.
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Model: GPT-2 Medium

Figure 16: GPT-2 Medium predictivity by voxel quartile. ROI 1: rC = 0.42 ± 0.03, rL =
0.26 ± 0.07. ROI 2: rC = 0.36 ± 0.04, rL = 0.17 ± 0.04. ROI 3: rC = 0.28 ± 0.02, rL =
0.04 ± 0.02.
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Model: GPT-2 Large

Figure 17: GPT-2 Large predictivity by voxel quartile. ROI 1: rC = 0.40 ± 0.03, rL = 0.29 ±
0.05. ROI 2: rC = 0.36 ± 0.03, rL = 0.14 ± 0.02. ROI 3: rC = 0.27 ± 0.03, rL = 0.04 ± 0.02.
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Model: GPT-2 XL

Figure 18: GPT-2 XL predictivity by voxel quartile. ROI 1: rC = 0.39± 0.02, rL = 0.23± 0.05.
ROI 2: rC = 0.37 ± 0.04, rL = 0.16 ± 0.04. ROI 3: rC = 0.29 ± 0.03, rL = 0.03 ± 0.02.
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Figure 19: Vicuna-1.5-7B predictivity by voxel quartile. ROI 1: rC = 0.39± 0.02, rL = 0.23±
0.05. ROI 2: rC = 0.42 ± 0.03, rL = 0.16 ± 0.04. ROI 3: rC = 0.30 ± 0.03, rL = 0.01 ± 0.03.
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Model: Qwen2.5-1.5B

Figure 20: Qwen2.5-1.5B predictivity by voxel quartile. ROI 1: rC = 0.39± 0.03, rL = 0.31±
0.05. ROI 2: rC = 0.36 ± 0.05, rL = 0.21 ± 0.04. ROI 3: rC = 0.27 ± 0.03, rL = 0.02 ± 0.03.
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Model: Qwen2.5-1.5B-Instruct

Figure 21: Qwen2.5-1.5B-Instruct predictivity by voxel quartile. ROI 1: rC = 0.37 ±
0.04, rL = 0.29± 0.06. ROI 2: rC = 0.39± 0.04, rL = 0.19± 0.04. ROI 3: rC = 0.26± 0.03, rL =
0.02 ± 0.03.
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Model: Qwen2.5-3B

Figure 22: Qwen2.5-3B predictivity by voxel quartile. ROI 1: rC = 0.39 ± 0.02, rL = 0.25 ±
0.06. ROI 2: rC = 0.40 ± 0.03, rL = 0.18 ± 0.04. ROI 3: rC = 0.29 ± 0.02, rL = 0.04 ± 0.02.
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Model: Qwen2.5-3B-Instruct

Figure 23: Qwen2.5-3B-Instruct predictivity by voxel quartile. ROI 1: rC = 0.41± 0.02, rL =
0.27 ± 0.06. ROI 2: rC = 0.38 ± 0.03, rL = 0.20 ± 0.04. ROI 3: rC = 0.28 ± 0.02, rL =
0.03 ± 0.03.
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Model: Qwen2.5-7B

Figure 24: Qwen2.5-7B predictivity by voxel quartile. ROI 1: rC = 0.39 ± 0.03, rL = 0.26 ±
0.06. ROI 2: rC = 0.39 ± 0.03, rL = 0.16 ± 0.04. ROI 3: rC = 0.27 ± 0.03, rL = 0.03 ± 0.02.

33



Published as a conference paper at COLM 2025

0.0

0.2

Pr
ed

ict
ivi

ty

Sentence paradigm
Controlled for

 language

ROI 1

Controlled for
 consistency

Word cloud paradigm
Controlled for

 language
Controlled for
 consistency

0.0

0.2

Pr
ed

ict
ivi

ty

ROI 2

1 2 3 4
Quartile (cons.)

0.0

0.2

Pr
ed

ict
ivi

ty

ROI 3

1 2 3 4
Quartile (lang.)

1 2 3 4
Quartile (cons.)

1 2 3 4
Quartile (lang.)

Model: Qwen2.5-7B-Instruct

Figure 25: Qwen2.5-7B-Instruct predictivity by voxel quartile. ROI 1: rC = 0.41 ±
0.02, rL = 0.23± 0.05. ROI 2: rC = 0.36± 0.05, rL = 0.21± 0.03. ROI 3: rC = 0.26± 0.03, rL =
0.00 ± 0.03.
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Model: FLAVA

Figure 26: FLAVA predictivity by voxel quartile. ROI 1: rC = 0.34 ± 0.03, rL = 0.15 ± 0.06.
ROI 2: rC = 0.32 ± 0.04, rL = 0.15 ± 0.02. ROI 3: rC = 0.24 ± 0.02, rL = −0.00 ± 0.03.
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Model: LLaVA-1.5-7B

Figure 27: LLaVA-1.5-7B predictivity by voxel quartile. ROI 1: rC = 0.35± 0.03, rL = 0.14±
0.06. ROI 2: rC = 0.35 ± 0.04, rL = 0.14 ± 0.03. ROI 3: rC = 0.28 ± 0.03, rL = −0.03 ± 0.03.
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Model: Qwen2.5-VL-3B-Instruct

Figure 28: Qwen2.5-VL-3B-Instruct predictivity by voxel quartile. ROI 1: rC = 0.36 ±
0.03, rL = 0.16± 0.06. ROI 2: rC = 0.34± 0.02, rL = 0.17± 0.02. ROI 3: rC = 0.26± 0.03, rL =
−0.02 ± 0.03.
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Model: Qwen2.5-VL-7B-Instruct

Figure 29: Qwen2.5-VL-7B-Instruct predictivity by voxel quartile. ROI 1: rC = 0.37 ±
0.03, rL = 0.20± 0.06. ROI 2: rC = 0.34± 0.03, rL = 0.19± 0.02. ROI 3: rC = 0.25± 0.02, rL =
−0.02 ± 0.03.
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