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Logical deduction and induction are fundamental 
components of human reasoning that have been argued 
to be distinct on theoretical grounds. However, it is 
unclear whether empirically, these are dissociable 
cognitive processes, or instead, instances of the same 
underlying cognitive operation. The representational 
format of logical reasoning has also been debated, with 
some arguing for linguistic representations, but others 
advocating for a symbolic but non-linguistic ‘language of 
thought (LOT)’ in which all logical reasoning is 
performed. Here, we use brain imaging (fMRI) to address 
both these questions and find that i) deduction and 
induction are neurally dissociable, and ii) neither form of 
reasoning relies on linguistic representations. 

Introduction 

Analytic and pragmatic theories of rational thought 
have postulated a divide between inductive and 
deductive reasoning (Carnap, 1950, 1952; Pólya, 1954; 
Priest, 1999; Rips, 2003; etc.). However, other 
proposals have posited a single domain-general 
processor that carries out hypothesis generation, 
confirmation, and elimination. In these latter proposals, 
inductive and deductive schemas both reduce to a 
general format, such as a mental model (Johnson-
Laird, 1994) or a set of world descriptions attached to 
corresponding conditional probabilities (e.g. Lake et al. 
2016; Wong & Grand et al. 2024), or to an ultimately 
domain-specific set of heuristics for navigating the 
world (e.g. Cosmides 1989; Cheng & Holyoak 1985). 
Critically, inducing novel hypotheses and deductive 
elimination of falsified hypotheses occur in the same 
model under all these accounts. 

Some evidence for a dissociation between inductive 
and deductive reasoning comes from different  
developmental trajectories. In particular, inductive 
theory generation appears to emerge in infancy 
(Gopnik, Meltzoff, & Kohl, 1999). In contrast, deductive 
reasoning is much slower to develop: the ability to 
reason by denying the consequent (Modus Tollens) 
emerges around age 3 years (Mody & Carey 2016), and 
we remain quite poor at disjunctive syllogistic reasoning 
even in adulthood (Wason 1966). However, previous 
attempts to distinguish inductive and deductive 
reasoning using brain imaging have not produced a 
clear answer (Osherson et al., 1998; Goel & Dolan, 
2004). 

In the current study, we build on advances in our 
understanding of the neural substrates of abstract 
reasoning and fluid intelligence (e.g., Duncan et al., 
2020) and use a state-of-the-art precision fMRI 
approach (Gratton & Braga, 2021), where all critical 
comparisons are performed within individual 

participants, to ask whether inductive and deductive 
reasoning dissociate in their neural substrates. In 
particular, the goal is to disambiguate among i) a 
monolithic account of human reasoning, in which 
inductive and deductive cognitive operations are 
examples of another more fundamental cognitive 
operation underlying all abstract reasoning (and 
perhaps goal-directed behaviors more generally), ii) 
accounts where deduction is a special case of 
induction or induction is a special case of deduction 
(e.g., higher complexity or higher uncertainty), and iii) 
an account where induction and deduction are distinct 
processes.  

 
Figure 1. Illustration of the deduction and induction 
tasks used in the fMRI study. 
 
   In our study (n=16 participants), we aimed to study 
deduction and induction in their native formats (Fig. 1). 
For deductive reasoning, we adopted a paradigm 
which taps deduction-specific cognitive load by 
contrasting mental operations for disjunctive syllogisms 
(Modus Tollens), which consist of denying the 
consequent—arguably the most fundamental deductive 
operation required for all hypothesis elimination, and a 
simpler operation (Modus Ponens), which is easier for 
humans because it falls naturally from affirming the 
antecedent (Monti et al., 2007; Coetzee & Monti, 2018). 
For inductive reasoning, we adopted a paradigm from 
Rule, Piantadosi, and Tenenbaum (2020), where 
participants are provided with an input list and an output 
list and have to guess (induce) the rule that led to the 
inputàoutput transformation. They then have a chance 
to test their hypothesis on a new input list, and so on 
until they guess the correct rule. In the control condition, 
they know what the rule is and simply have to apply it to 
a list. This rule-guessing paradigm plausibly taps similar 
cognitive operations as the Abstract Reasoning Corpus 
(ARC, Chollet 2019) and its sequels (ConceptARC, 
Moskvichev et al., 2023), as well as a standard tests of 
fluid intelligence (e.g., Ravens Progressive Matrices; 
RAPM, Raven et al., 1998), and the Number Game 
(Tenenbaum 1999), as well as perhaps more concrete 
novel concept learning tasks (Gauthier & Tart, 1997; Xu 
& Tenenbaum 2007). 



Results 

First, we asked whether deduction and induction are 
neurally separable. In the first analysis, we examined 
responses in the domain-general Multiple Demand 
(MD) network, which has been implicated in abstract 
reasoning and general fluid intelligence (Duncan et al., 
2020) to the two critical tasks. The MD network was 
functionally defined using a standard ‘localizer’ based 
on a spatial working memory (WM) task (Fedorenko et 
al., 2013; Assem et al., 2020). We found that the MD 
network was engaged during inductive, but not 
deductive reasoning (Fig. 2A). 

Next, we searched across the brain for regions that 
are sensitive to deductive reasoning load (i.e., respond 
more to Modus Tollens than Modus Ponens). We found 
20 regions that responded strongly to deductive load 
(the effects were estimated in left-out runs of data, 
ensuring no circularity). When we searched across the 
brain for ROIs within which there was not any 
responsiveness to spatial WM, we found only 2 left 
frontal lobe ROIs (Fig. 2B), and these deduction-
responsive regions were distinct from the MD network 
(also as evidenced by the lack of responsiveness during 
the spatial WM task conditions), and they also 
responded weakly to inductive reasoning (the response 
for the critical inductive condition is the same as to the 
Modus Ponens condition). 
A: The Multiple Demand Network 

  
B: The Deductive Load fROIs 

   
C: Fine-grained activations in the MD network 

 
Figure 2.  A: Responses in the Multiple Demand (MD) 
network (across regions; individual regions’ profiles 

look similar) to hard and easy spatial WM (blue bars), 
deduction (green bars), and induction (purple bars; 
lighter bar is the easier, control condition in all cases). 
B: Responses in the Deductive load regions to spatial 
WM, deduction (estimated using independent runs of 
data), and induction. C: Spatial Correlations between 
task representations within the MD parcels (computed 
by Fischer transformed correlation coefficients). 

Finally, for the induction task and the spatial WM task, 
both of which recruited the MD network, we asked 
whether the fine-grained neural representations are 
dissociable. To do so, we examined the similarity of the 
activation patterns within the MD areas i) across the 
runs within a task, vs. ii) between tasks, and found a 
robust dissociation (Fig. 2C). 

To ask whether deductive or inductive reasoning 
rely on natural language representations, we 
examined responses in the language-selective fronto-
temporal network, which has been implicated in 
linguistic comprehension and production (Fedorenko et 
al., 2024). The language network was defined using a 
standard ‘localizer’ based on a contrast of reading 
sentences vs. perceptually similar meaningless 
stimuli—nonword sequences (Fedorenko et al., 2010). 
This network showed no response during inductive 
reasoning or during deductive reasoning (note that both 
of the deductive task conditions use linguistic stimuli so 
elicit a positive response, but critically, the more 
demanding condition does not elicit a stronger 
response; cf. Fig. 2B) (Fig. 3). 

In summary, deductive and inductive reasoning 
appear to be dissociable in the human brain: inductive 
reasoning recruits the domain-general network for 
abstract reasoning—the Multiple Demand network 
(although it shows a distinct fine-grained pattern within 
this network relative to a demanding working memory 
task). However, deductive reasoning recruits a distinct 
set of brain areas that respond only weakly during 
inductive reasoning. Moreover, although the format of 
reasoning representations remains an important open 
question, we can rule out the hypothesis that they rely 
on linguistic representations (cf. Carruthers, 2002) 

  
Figure 3.  Responses in the language network 

(across regions; individual regions’ profiles look similar) 
to sentence and nonword reading (grey bars), 
deduction (green bars), and induction (purple bars).  
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