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Abstract. The need to maintain protein structure constrains evolution at the sequence level, and
patterns of coevolution in homologous protein sequences can be used to predict their 3D structures
with high accuracy. Our understanding of the relationship between protein structure and evolution
has traditionally been benchmarked by computational models’ ability to predict contacts from a single
representative, experimentally determined structure per protein family. However, proteins in vivo are
highly dynamic and can adopt multiple functionally relevant conformations. Here we demonstrate
that interactions that stabilize alternate conformations, as well those that mediate conformational
changes, impose an underappreciated but significant set of evolutionary constraints. We analyze the
extent of these constraints over 56 paralogous G protein coupled receptors (GPCRs), β-arrestin and the
human SARS-CoV2 receptor ACE2. Specifically, we observe that contacts uniquely found in molecular
dynamics (MD) simulation data and alternate-conformation crystal structures are successfully predicted
by unsupervised language models. In GPCRs, adding these contacts as positives increases the percentage
of top contacts classified as true positives, as predicted by a state-of-the-art language model, from
69% to 87%. Our results show that protein dynamics impose constraints on molecular evolution and
demonstrate the ability of unsupervised language models to measure these constraints.

1 Background

In recent years, the exponential decrease in sequencing costs has led to rapid growths of protein
sequence databases that has vastly outstripped the rate of experimental structure determination
and functional annotation. This discrepancy has led to significant interest in the development of un-
supervised learning methods that can extract biologically meaningful information from sequences
alone. In particular, many techniques focus on protein families – sets of homologous sequences
that share a common underlying fold and function while retaining as little as 15% sequence iden-
tity between individual sequences. These protein families are an evolutionary record of the need
to balance exploration and conservation, with maintenance of structure and function imposing
strong restraints on sequence variation within a family. In order to maintain interactions important
for function, residues that are in close 3D spatial proximity (even if distant in sequence) show
strong signals of co-evolution [1–3]. The breakthrough success of AlphaFold2 and other methods
in predicting protein structure from sequence depends heavily on learning patterns of evolutionary
variation, either from explicit sequence alignments [4,5] or implicit representations of evolutionary
patterns [6].

While AlphaFold2 and related work have greatly advanced our understanding of how protein
structure influences sequence evolution, this understanding is centered around a static view of
protein structure. AlphaFold2 is trained on individual protein structures that are mostly resolved
by X-ray crystallography, and unsupervised methods that preceded AlphaFold2 have mostly been
evaluated on these same static structures [7, 8]. In contrast, proteins in vivo often depend on
significant dynamical changes to carry out their functions. Many proteins, for example, adopt
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Fig. 1. Evaluating contact prediction across proteins’ conformational landscapes. Proteins adopt different
conformations and transient dynamical states, each with unique sets of contact patterns (cartoon-left). Protein lan-
guage models, which are trained only on evolutionary protein sequence data, can be used to predict contacts (right).
We observe that protein language models are able to predict contacts unique to alternate conformations (top left) as
well as those unique to transient dynamical states (bottom left). These effects show the impact of protein dynamics
on sequence coevolution.

alternate conformations in complex with another protein or small molecule binder. AlphaFold2 has
been shown to possess some implicit knowledge of protein dynamics [9, 10], but there is no clear
way to extract such information at high resolution for an arbitrary protein of interest. Training a
deep learning model to predict dynamics of a protein based on sequence alone remains out of reach
due to the scarcity of experimental dynamics measurements and the computational intensiveness
of molecular dynamics simulations [11].

We postulated that protein dynamics might influence sequence variation in evolutionarily re-
lated proteins beyond the limited role which has been previously established [12, 13]. We collected
protein structures for three different families representing a larger fraction of each conformational
landscape than is typically analyzed. Specifically, we gathered experimental structures of 56 paralo-
gous G protein coupled receptors (GPCRs), β-arrestin, and the human SARS-CoV2 receptor ACE2
in multiple conformational states, as well as microsecond timescale molecular dynamics launched
from those states. Then, as illustrated in Figure 1, we measured the ability of protein language
models to predict interactions (residue-residue contacts) that only occur in alternate dynamical
states. Rather than using AlphaFold2, which has been trained to predict stable crystal structures,
we chose to use unsupervised models of protein sequence variation, which capture all types of co-
evolutionary constraints without bias. We primarily used the protein language model MSA Trans-
former, which is the highest-performing unsupervised method for the prediction of static structure
protein contacts [14]. We found that dynamics-only interactions are predicted by MSA Transformer
with higher strength than can be explained based on single static structures. Since these models are
trained on protein sequence variability data, our results demonstrate that dynamics constrain se-
quence evolution and illustrate the importance of understanding the full conformational landscapes
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of proteins. Our results also show that assessments of unsupervised language models of sequence
variation based on static structure underestimate model performance; for GPCRs, including dy-
namic interactions in an evaluation of MSA Transformer means that it identifies interactions with
a precision of 87% compared to 69% using static interactions alone, when the number of predicted
contacts is equal to the length of the protein.

2 Methods

2.1 Datasets

We studied contact maps across the conformational landscape for 56 paralogous GPCRs, as well
as for β-arrestin and ACE2. For each protein, we generated ground truth contact maps using
the following data: a representative experimental structure, molecular dynamics (MD) simulation
trajectory data, and the experimental structure used to initialize the simulation. For GPCRs, rep-
resentative structures were obtained from the PDBRenum server [15], which renumbers residues in
Protein Data Bank (PDB) [16] files to exactly match their UniProt [17] sequence for ease of down-
stream processing. MD trajectory data and corresponding initialization structures were obtained
from GPCRmd [18]. For β-arrestin, representative structures were obtained from the PDB, while
trajectories and initialization structures were obtained from Latorraca et al. [19]. ACE2 trajectories
and initialization structures were obtained from the D.E. Shaw Research SARS-CoV-2 technical
data repository [20].

2.2 Contact Extraction and Prediction

We extracted both static and dynamic contacts with the GetContacts software package [21]. Get-
Contacts identifies direct inter-residue contacts based on a combination of contributing atom types
and interaction geometry. Additionally, we calculated Cβ-distance-based contact maps which clas-
sify residues as being “in contact” if the distance between their Cβ atoms is less than 8.5Å [22].
For each protein, we identified the subset of residues that were present in the structure files for all
conformations of that protein, and truncated the extracted contact maps to only include interac-
tions between those residues. We were able to compute contact maps for 56 out of 68 total GPCRs
in the GPCRmd dataset, as well as bovine β-arrestin and human ACE2, which are each a single
protein.

Predicted contacts were generated using pretrained MSA Transformer [14] and ESM-1b models
[23]. We extracted the UniProt sequences corresponding to our experimental structure data and
generated MSAs for these sequences using HHblits [24] to search against the UniRef database. MSA
Transformer inference was run on the MSAs, while ESM-1b model inference was performed on single
sequences directly. Transformer-based language models, like MSA Transformer and ESM-1b, build
internal representations of the way different positions in their inputs relate to each other in the form
of L× L attention matrices, where L is the input protein sequence length [25]. Previous work has
shown that a sparse combination of these attention matrices can accurately predict protein contact
maps [8, 26]. We evaluate the precision (defined as the percentage of predicted contacts classified
as true positives) on various fractions of the top L attention activations in order to account for the
roughly linear scaling of contacts in relation to protein length L [27, 28].

The precision metrics we chose were motivated by the standard baseline of a single static
structure, which we denote as the primary structure, and we analyzed precision increases resulting
from adding contacts from either alternate conformation (secondary) static structures or dynamics
to the set of positives. Therefore, each metric was computed on a per-conformation basis. We report
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precision on the following: Cβ-distance-based contacts, GetContacts statics, aggregate contact maps
consisting of statics from multiple conformations, GetContacts dynamics, and combinations of the
aforementioned. For each metric, we computed precision on top-L, top-L/2, and top-L/5 contacts
across short-range (6 ≤ sep ≤ 12), medium-range (12 ≤ sep ≤ 24) and long-range (24 ≤ sep)
contacts, where “sep” denotes the inter-residue distance in 1D sequence.

2.3 Control Precision Values

We evaluated the precision of MSA Transformer for contact prediction using various definitions of
positives resulting in different numbers of true positives. Precision values assessed over different
numbers of positives are not fully controlled. In order to test the significance of observed precision
increases, we calculated a control precision for each set of positive contacts, in which we sampled
an equal number of contacts with the same distribution of reference static structure distances and
instead defined those as positives. This control measures how strongly a set of contacts is predicted
compared to an alternative based purely on distances in one representative structure. Concretely,
we used the following scheme to randomize contact maps: bin a subset of non-diagonal residue pairs
by Cβ-Cβ distance into 21 bins according to the following divisions (in Å): {0, 2.5, 3.0, 3.5, 4.0, 4.5,
5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 10.0, 12.0, 18.0, 24.0, 36.0, 50.0, ∞}, then randomly permute
contacts within each bin. For primary statics and dynamics metrics, all contacts were permuted. All
other metrics involved adding new positives to a primary statics contact set, and for these metrics
all contacts not in the primary statics were permuted.

3 Results

3.1 MSA Transformer Predicts Dynamic Contacts

MSA Transformer is an unsupervised protein language model, trained to understand sequence
variability in protein multiple sequence alignments. From databases of protein sequences alone,
MSA Transformer learns which pairs of positions in a particular protein have significant covariance
and stores this information in attention maps. These attention maps correlate strongly with static
structure contacts.

We find that MSA Transformer attention maps capture contacts across the conformational
landscapes of proteins, and not just in single static structures. We collected contacts from 56
GPCRs, of which 42 had structures in both inactive and active conformations, as well as from
ACE2 and β-arrestin. We computed the precision of predicted MSA Transformer contacts using
various sources of contacts as positives: a representative static structure, additional structures in an
alternate conformations, or a molecular dynamics simulation (Table 1). We also performed all the
same evaluations using ESM-1b, with similar trends but lower accuracy for ESM-1b on all metrics.
We report these evaluations and expanded results in Supplementary Table S1.

Broadly, inclusion of alternate conformation and dynamic contacts as positives led to significant
gains in apparent precision relative to control across all ranges and at all prediction levels. This
gain was especially dramatic for the long-range contact subset (sep ≥ 24), as defined by contacts
involving residues separated by 24 or more positions in 1D sequence. Such contacts are particularly
suited to determining global structure, and novel interactions in this region are more likely to
correspond to large domain conformational changes. For long-range contacts, we observe an increase
of 15% in precision by including contacts from alternate crystal structures as positives, and an
additional increase of 36% by further including contacts unique to molecular dynamics.
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All GPCRs (6 ≤ sep) Short Medium Long ACE2 β-arrestin
Metric L L/2 L/5 L L L L L

Cβ-distance 0.69 (0.69) 0.82 (0.82) 0.91 (0.91) 0.58 (0.58) 0.77 (0.77) 0.78 (0.78) 0.62 0.62
Static 0.37 (0.33) 0.47 (0.43) 0.54 (0.50) 0.30 (0.26) 0.40 (0.38) 0.42 (0.38) 0.30 0.32
Agg Cβ-distance 0.74 (0.72) 0.86 (0.84) 0.93 (0.92) 0.63 (0.61) 0.81 (0.80) 0.83 (0.80) 0.70 0.66
Agg Static 0.50 (0.47) 0.62 (0.58) 0.70 (0.67) 0.41 (0.38) 0.53 (0.51) 0.57 (0.53) 0.41 0.40
Dyn 0.81 (0.72) 0.89 (0.82) 0.93 (0.88) 0.72 (0.64) 0.81 (0.79) 0.88 (0.78) 0.80 0.62
Agg Cβ-distance + Dyn 0.87 (0.80) 0.94 (0.89) 0.98 (0.94) 0.78 (0.72) 0.89 (0.87) 0.93 (0.86) 0.84 0.69
Agg Static + Dyn 0.84 (0.76) 0.92 (0.85) 0.96 (0.91) 0.74 (0.67) 0.84 (0.81) 0.90 (0.82) 0.80 0.63

Table 1. Average precision across all proteins for MSA Transformer predictions. “Cβ-distance” refers to
contacts extracted from an experimental structure based on a Cβ-Cβ distance threshold of 8.5Å, while “Static” refers
to contacts extracted from an experimental structure via GetContacts. “Agg” refers to combining contacts from
multiple conformations. “Dyn” refers to adding contacts from molecular dynamics. Unparenthesized numbers are
true precisions, and parenthesized (GPCRs only) are baseline precisions computed via the equidistant Cβ-Cβ control.
Adding new positives from dynamical information consistently increases precision beyond the control, indicating that
contacts from dynamics are significantly predicted. Each precision value is the mean precision of all conformations
of a protein. Each GPCR value is the mean over the aforementioned mean precision for all GPCRs. (14 GPCRs had
only one static conformation, so aggregate statistics were omitted.) Overall GPCR precision was computed for the
top-L, top-L/2, and top-L/5 contacts. For short-range (6 ≤ sep ≤ 12), medium-range (12 ≤ sep ≤ 24) and long-range
(24 ≤ sep) GPCR contacts, we computed precision over the subset of the top L predicted interactions with the
corresponding separation.

The addition of new positives to contact prediction can only increase precision. To determine
whether increases in precision were meaningful, we computed a control precision for each measure-
ment, as described in Section 2.3. This control was calculated as the precision of MSA Transformer
over an equal number of positives, sampled randomly with a matching distribution of static struc-
ture distances. This control assesses whether an increase in precision can be explained by simply
picking positives based on distance in one representative structure. All methods of adding posi-
tives from dynamical information increased precision beyond the control, indicating that contacts
from dynamics are predicted by MSA Transformer at a level beyond what can be expected from a
representative static structure.

The substantial improvement in precision given by dynamics over the Cβ-distance baseline in-
dicated that many dynamic interactions have Cβ-Cβ distances greater than 8.5Å in the primary
static structure. We analyzed distributions of Cβ-Cβ interaction distances for various interaction
types (Figure 2) and observed that dynamic contact pairs, and to a lesser extent contacts from
alternate conformation static structures, are often distant in primary static structures and therefore
would not be detected by distance threshold relaxation in Cβ-distance-based methods. We addi-
tionally examined distributions of sequence separation by contact type, observing similar trends
(Supplementary Figure S1).

We report precision for both GetContacts statics and Cβ-distance-inferred static interactions.
Classifying contacts based on pairwise Cβ distances has been a mainstay in the field of contact
prediction, beginning with its incorporation as a standard metric in Critical Assessment of protein
Structure Prediction (CASP) challenges [29]. Compared to direct interaction-based contact extrac-
tion techniques, Cβ-distance-based methods have the advantages of computational simplicity, and
are side chain-agnostic, making them more robust to inaccurately modeled side chains in lower-
resolution structures. However, prior work has noted that such methods tend to inflate precision,
and predominantly report on contact pairs that contribute little to structural interpretation [22].
This further motivated the equidistant Cβ control, which directly compares GetContacts and Cβ-
distance-based contact extraction methods on a per-contact basis. Across our GPCR data, we find
that contacts extracted from a single static structure using GetContacts evaluate with higher top-L
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Fig. 2. Distributions of residue-residue distance in representative static structure for unique contacts of
each type. Cβ-distance and static refer to different ways to extract contacts from the representative static structure
(Cβ-distance or GetContacts, respectively). Secondary static contacts are those contacts unique to an alternate
conformation, and dynamic contacts are unique to molecular dynamics simulations. A large fraction of new contacts
from dynamics and alternate conformations are distant in the representative conformation, meaning these contacts
would be hard to predict from a single structure. Molecular dynamics introduces far more of these novel contacts in
absolute number.

precision (37%) than control (33%), suggesting that they provide structural insights beyond what
can be inferred by simply looking in the neighborhood of residues that are already near to one
another. We henceforth refer to contacts extracted from static structures using GetContacts sim-
ply as “statics,” and focus the remaining analysis on the degree to which molecular dynamics and
alternate conformation structures improve upon these “statics.”

3.2 Predicted Contact Probabilities Correlate with Dynamic Contact Dwell Time

Contacts that appear in molecular dynamics simulations generally do not persist over the whole
simulated time. We examined whether MSA Transformer could predict the duration of contacts in
molecular dynamics simulations. We restricted to contacts that are unique to molecular dynamics
and then computed the dwell time fraction for each, defined as the fraction of the MD simulation
time where the contact exists. We also restricted to contacts with sep ≥ 6. We then correlated these
dwell times with the predicted probability of contact from MSA Transformer (Figure 3). Across all
protein families, there is significant correlation between dwell time fraction and predicted contact
probability from MSA Transformer, with particularly high correlation in GPCRs. This result holds
despite the fact that we have removed many of the strongest contacts by only using those which are
unique to molecular dynamics. The magnitude and statistical significance of these correlations is
robust to the sequence separation cutoff we employed (Supplementary Figure S2). Typically, the
contact probability is only used as a means of ranking contacts for selection at different thresholds
as a function of sequence length (e.g., to find the “top” L contacts). By showing that predicted
contact probability correlates with the energetics of an interaction, we provide a justification for
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Fig. 3. Prediction strength correlates with dwell time. We calculated dwell time fraction for all contacts unique
to molecular dynamics with sequence separation ≥ 6 and correlated this with the predicted contact probability from
MSA Transformer. We define dwell time fraction as the fraction of time that a particular contact is formed across
a molecular dynamics trajectory. Contacts with higher predicted contact probability correlate with increased dwell
time, even though we have removed many of the strongest contacts by only using those which are unique to molecular
dynamics. Empirical plots of dwell time fraction against predicted contact probability are shown for a representative
GPCR, the µ-opioid receptor, as well as ACE2 and β-arrestin. Note that axes are on a log scale.

Metric GPCRs ACE2 β-arrestin

Static 0.01 0.01 0.01
Secondary Static 0.15 0.10 0.17
Dynamic 0.60 0.47 0.28

Spearman’s ρ (dwell time fraction vs.
predicted contact probability)

0.30 0.26 0.22

Table 2. Fraction of of distant contacts and correlation between dwell time and prediction strength.
Distant contacts are defined as residue pairs separated by least 10Å; contacts at this distance are out of range for
reasonable Cβ-Cβ thresholding schemes. Across all protein families, molecular dynamics provide a significant source
of new interactions between residues originally too far apart – likely corresponding to real conformational changes.
There are significant Spearman correlations between dwell time fraction and MSA Transformer predicted contact
probability for unique dynamics in each protein family. (Many strongly predicted, high dwell time contacts are also
present in primary static structures, so we omit them to avoid inflating correlation.) GPCR metrics are also the mean
across all GPCRs.

more quantitative interpretation of the outputs of protein language models. In Table 2, we list the
mean Spearman’s rank correlation ρ for each protein family.

3.3 Family-Specific Biological Insights

GPCRs. G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in
eukaryotes, with 800 members in the human genome [30]. As a family, they share a common fold
that is characterized by seven transmembrane (TM) α helices and are fully embedded in the cell
membrane (Figure 4a). As cell surface receptors, GPCRs become activated by binding to ligands
on the outside of the cell, at which point they can initialize intracellular signaling cascades that
lead to changes in cellular behavior [31]. While the structural hallmark of active receptors is a
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Fig. 4. Prediction of GPCR active-state-stabilizing contacts. (a) Comparison of the µ-opioid receptor in
inactive (green) and active (orange) states. (b) Top L MSA Transformer predicted contacts. In the upper triangular
part of the matrix, all predictions are colored gray, whereas in the lower triangular part, predictions are colored by the
state in which they are uniquely observed (green, blue, cyan) or false positives (red). (c) Correctly predicted contacts
unique to active state of the µ-opioid receptor are shown as lines in the active state crystal structure (PDB:5C1M).
Lines are colored blue if they correspond to residues that show large positional changes in crystal structures, and
gray otherwise.

large outward motion of TM helix 6 (Figure 4a), biophysical and molecular dynamics studies have
shown that GPCR activation is not a simple “on-off switch”, but rather a consequence of increased
local dynamics surrounding TM6 [32].

In particular, we frequently observe a cluster of high-confidence predicted contacts between
TM5 and TM6 that uniquely arises when these transmembrane helices adopt their active-state
conformations (Figure 4b,c – here shown for the µ-opioid receptor). This TM5-TM6 interface we
highlight involves only a single contact pair from the inactive state structure, in stark contrast
to the 10 present in the active state structure, and 49 in molecular dynamics. Predicted contacts
from MSA Transformer in this region demonstrate impressive recall; they correctly identify 9 of
the 10 active-state contacts and 12 of the 49 dynamical contacts (Figure 4b,c), showing high
sensitivity to detect contact networks involved in important biological processes. (We also observe
new interactions at the TM6-TM7 interface in molecular dynamics, which occur in states even
more “inactive” than the initial state – thus highlighting the spectrum of TM6 motion.) Though
the relative stability of the inactive state necessitates intracellular stabilizing proteins to obtain
active-like receptor structures [33–35], we find that interactions contributing to, and stabilizing,
this TM6 outward motion are also a strong source of signal in sequence variation, as 15 of the 60
new positive contacts originating from the active state structure cluster at the cytoplasmic ends of
TM5 and TM6.

ACE2. The angiotensin-converting enzyme (ACE)-related carboxypeptidase, ACE2, is a mem-
brane anchored enzyme that is involved in degradation of the blood pressure modulating peptide
angiotensin, and perhaps more notably, is the human receptor for the SARS-CoV-2 virus [36]. Struc-
turally, ACE2 is composed of two domains, an N-terminal metalloprotease domain (NTD) that is
responsible for peptide cleavage, as well as a C-terminal collectrin-like domain (CTD). Binding of
ACE2 inhibitors, and presumably the native substrate angiotensin, leads to a ∼ 16◦ hinge bending
motion of the two domains relative to each other that leads to a closing of the substrate cleft [37]
(Figure 5b).
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Fig. 5. Language models correctly identify dynamic and state-specific contacts in ACE2. (a) Top L
MSA Transformer predictions shown as gray circles (upper right), and colored (lower left) red if false positives, or by
provenance. (b) Comparison of Apo (top, green) (PDB:1R42) and substrate-bound (bottom, orange) (PDB:1R4L)
ACE2 showing the result of lid closure on a distal helix (red arrow). Correctly predicted contacts unique to the MD
simulation or the inhibitor bound state are mapped onto the substrate bound complex and colored if they correspond
to residues that show large positional changes upon substrate binding (cyan = from MD, blue = substrate bound),
or gray if they report on relatively immobile regions. (c) Zoomed inset indicated in b showing top predicted contacts
unique to the substrate bound state (top) or the MD simulation (bottom). Coloring is identical to b.

Compared to evaluating precision on the apo structure alone, inclusion of novel contacts from
both the structure of substrate bound, as well as MD trajectories launched from the apo-state
structure, lead to greatly increased precision metrics of contacts predicted by language models
(Figure 5a). While the majority of new correctly predicted contacts involve local sets of interactions
that likely could be captured by relaxing contact inclusion criteria (Figure 5b,c), we observe a
series of contacts clustered between two apical helices (Figure 5a (circled), b&c (red arrows))
capturing the most significant motion between apo- and substrate-bound structures. In particular,
these contacts are unique to the substrate bound conformation and as such, primarily report on
lobe closure. More specifically, when focusing on the contact region between these two helices, we
see that only a single residue pair is present in the apo-structure, compared to 9 and 50 from the
substrate-bound and MD trajectory, respectively. Impressively, 6 (of 9 observed) substrate-bound
and 13 (of 50 observed) MD simulation contacts account for all 19 new true positive contacts in this
region, demonstrating high recall for a dynamically important region. The formation of contacts
that stabilize both apo- and substrate-bound states are important for ACE2’s enzymatic activity;
these sets of interactions are likely important drivers of coevolution.

β-Arrestin. β-arrestin is a soluble protein that is predominantly composed of β strands and is
involved in modulation of GPCR signaling pathways. Canonically, β-arrestin becomes activated
by binding to phosphorylated C-terminal tails of activated GPCRs, leading to desensitization and
internalization of the receptor, as well as initiation of arrestin-specific signaling cascades [19]. Struc-
turally, β-arrestin is an elongated protein composed of two folded domains (termed N-lobe and
C-lobe) that are composed of contiguous sequence segments corresponding to the first and second
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halves of the sequence, respectively. These domains share a relatively restricted interface, with the
majority of interdomain contacts arising from a sparse set of residues. A combination of molecu-
lar dynamics and biophysical work has shown that activation of β-arrestin predominantly involves
fairly local, domain restricted, conformational changes, particularly in a series of apical loops. In-
deed, we observed that incorporation of MD data and alternate conformations into the analysis
of predicted contacts led to increased precision, but by a modest amount compared to the afore-
mentioned improvement for GPCRs and ACE2 (Table 2). This may be reflected by only ∼28% of
unique dynamic interactions in β-arrestin being separated by at least 10Å, in contrast to ∼60% in
GPCRs and ∼47% in ACE2.

4 Discussion

We showed that dynamical changes of proteins constrain sequence evolution in ways that cannot
be predicted from single static structures. In GPCRs, β-arrestin, and ACE2, residue-residue in-
teractions that are unique to alternate conformational states and transient dynamical changes are
accurately predicted by MSA Transformer, an unsupervised model of protein sequence variation.
We relied on molecular dynamics simulations and crystal structures of alternate conformations for
ground truth data about dynamical changes of proteins. In the future, larger amounts of molecular
dynamics data could enable further investigation into the relationship between protein dynamics
and sequence evolution. We are also excited about the rapid growth of Cryo-EM as a method
of structure determination. Cryo-EM allows the capture of protein structures in more varied and
natural structural states, as well as the direct inference of continuous variation [38–40], and could
therefore provide a large additional source of information about protein dynamics. As both of
these data sources grow, it will be interesting to consider integrating dynamics prediction into a
supervised structure predictor such as AlphaFold2 [4].

MSA Transformer and other deep learning methods of proteins build on significant literature
using classical methods to model protein sequence variation. Statistical models of protein multiple
sequence alignments, equivalent to Potts models from statistical physics, have been particularly
widely used [7, 41–44]. Pairwise interaction terms from these models accurately predict crystal
structure contacts, and these models are also useful for sequence generation and protein fitness pre-
diction. Anishchenko et al. [12] previously used these statistical models to analyze how effects such
as oligomeric contacts, structural differences in homologs, and alternative conformations impact
protein evolution using statistical models, finding relatively small contributions from alternate con-
formations. Our analysis using the more powerful MSA Transformer model and molecular dynamics
simulation data finds a significantly larger role of protein dynamics in residue-residue coevolution.
These results demonstrate the utility of unsupervised deep learning models of protein sequence
variation for scientific discovery, adding to work using such models for static structure prediction,
sequence generation, and protein fitness prediction [8, 23,45].
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Supplementary Material

A Supplementary Figures and Tables

Fig. S1. Residue-residue sequence separation distribution for unique contacts by contact type.

Fig. S2. Mean Spearman’s rank correlation over all GPCRs by residue-residue sequence separation.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.16.512436doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.16.512436
http://creativecommons.org/licenses/by-nc-nd/4.0/


S2 A. Fung, A. Koehl, M. Jagota and Y.S. Song

A
ll

(6
≤

se
p

)
6
≤

se
p
≤

1
2

1
2
≤

se
p
≤

2
4

2
4
≤

se
p

M
et

ri
c

L
L
/
2

L
/
5

L
L
/
2

L
/
5

L
L
/
2

L
/
5

L
L
/
2

L
/
5

C
β
-d

is
ta

n
ce

0
.6

9
(0

.6
9
)

0
.8

2
(0

.8
2
)

0
.9

1
(0

.9
1
)

0
.5

8
(0

.5
8
)

0
.7

2
(0

.7
2
)

0
.8

4
(0

.8
4
)

0
.7

7
(0

.7
7
)

0
.9

0
(0

.9
0
)

0
.9

7
(0

.9
7
)

0
.7

8
(0

.7
8
)

0
.8

6
(0

.8
6
)

0
.9

5
(0

.9
5
)

S
ta

ti
c

0
.3

7
(0

.3
3
)

0
.4

7
(0

.4
3
)

0
.5

4
(0

.5
0
)

0
.3

0
(0

.2
6
)

0
.4

0
(0

.3
5
)

0
.4

8
(0

.4
4
)

0
.4

0
(0

.3
8
)

0
.5

1
(0

.4
8
)

0
.5

7
(0

.5
5
)

0
.4

2
(0

.3
8
)

0
.5

0
(0

.4
5
)

0
.5

8
(0

.5
3
)

A
g
g

C
β
-d

is
ta

n
ce

0
.7

4
(0

.7
2
)

0
.8

6
(0

.8
4
)

0
.9

3
(0

.9
2
)

0
.6

3
(0

.6
1
)

0
.7

7
(0

.7
4
)

0
.8

6
(0

.8
5
)

0
.8

1
(0

.8
0
)

0
.9

2
(0

.9
1
)

0
.9

8
(0

.9
7
)

0
.8

3
(0

.8
0
)

0
.9

0
(0

.8
8
)

0
.9

8
(0

.9
6
)

A
g
g

S
ta

ti
c

0
.5

0
(0

.4
7
)

0
.6

2
(0

.5
8
)

0
.7

0
(0

.6
7
)

0
.4

1
(0

.3
8
)

0
.5

4
(0

.4
9
)

0
.6

6
(0

.6
2
)

0
.5

3
(0

.5
1
)

0
.6

6
(0

.6
3
)

0
.7

5
(0

.7
1
)

0
.5

7
(0

.5
3
)

0
.6

6
(0

.6
2
)

0
.7

5
(0

.7
2
)

D
y
n

0
.8

1
(0

.7
2
)

0
.8

9
(0

.8
2
)

0
.9

3
(0

.8
8
)

0
.7

2
(0

.6
4
)

0
.8

2
(0

.7
4
)

0
.8

8
(0

.8
3
)

0
.8

1
(0

.7
9
)

0
.9

1
(0

.8
7
)

0
.9

5
(0

.9
2
)

0
.8

8
(0

.7
8
)

0
.9

2
(0

.8
5
)

0
.9

6
(0

.9
0
)

C
β
-d

is
ta

n
ce

+
D

y
n

0
.8

6
(0

.7
9
)

0
.9

3
(0

.8
8
)

0
.9

7
(0

.9
4
)

0
.7

7
(0

.7
1
)

0
.8

6
(0

.8
1
)

0
.9

3
(0

.8
9
)

0
.8

7
(0

.8
6
)

0
.9

5
(0

.9
4
)

0
.9

9
(0

.9
8
)

0
.9

2
(0

.8
5
)

0
.9

5
(0

.9
1
)

0
.9

9
(0

.9
7
)

S
ta

ti
c

+
D

y
n

0
.8

3
(0

.7
5
)

0
.9

0
(0

.8
4
)

0
.9

5
(0

.9
0
)

0
.7

3
(0

.6
6
)

0
.8

3
(0

.7
7
)

0
.8

9
(0

.8
5
)

0
.8

3
(0

.8
0
)

0
.9

2
(0

.9
0
)

0
.9

8
(0

.9
5
)

0
.8

9
(0

.8
1
)

0
.9

4
(0

.8
7
)

0
.9

7
(0

.9
3
)

A
g
g

C
β
-d

is
ta

n
ce

+
D

y
n

0
.8

7
(0

.8
0
)

0
.9

4
(0

.8
9
)

0
.9

8
(0

.9
4
)

0
.7

8
(0

.7
2
)

0
.8

7
(0

.8
2
)

0
.9

3
(0

.8
9
)

0
.8

9
(0

.8
7
)

0
.9

6
(0

.9
5
)

0
.9

9
(0

.9
8
)

0
.9

3
(0

.8
6
)

0
.9

6
(0

.9
2
)

0
.9

9
(0

.9
7
)

A
g
g

S
ta

ti
c

+
D

y
n

0
.8

4
(0

.7
6
)

0
.9

2
(0

.8
5
)

0
.9

6
(0

.9
1
)

0
.7

4
(0

.6
7
)

0
.8

4
(0

.7
8
)

0
.9

1
(0

.8
6
)

0
.8

4
(0

.8
1
)

0
.9

4
(0

.9
1
)

0
.9

8
(0

.9
6
)

0
.9

0
(0

.8
2
)

0
.9

5
(0

.8
8
)

0
.9

8
(0

.9
4
)

M
S

A
T

ra
n

sf
o
rm

er

A
ll

(6
≤

se
p

)
6
≤

se
p
≤

1
2

1
2
≤

se
p
≤

2
4

2
4
≤

se
p

M
et

ri
c

L
L
/
2

L
/
5

L
L
/
2

L
/
5

L
L
/
2

L
/
5

L
L
/
2

L
/
5

C
β
-d

is
ta

n
ce

0
.4

4
(0

.4
4
)

0
.5

6
(0

.5
6
)

0
.6

8
(0

.6
8
)

0
.3

7
(0

.3
7
)

0
.4

9
(0

.4
9
)

0
.6

2
(0

.6
2
)

0
.5

3
(0

.5
3
)

0
.6

4
(0

.6
4
)

0
.7

6
(0

.7
6
)

0
.6

0
(0

.6
0
)

0
.6

9
(0

.6
9
)

0
.7

6
(0

.7
6
)

S
ta

ti
c

0
.2

2
(0

.2
0
)

0
.2

8
(0

.2
6
)

0
.3

6
(0

.3
3
)

0
.1

8
(0

.1
6
)

0
.2

4
(0

.2
1
)

0
.3

2
(0

.2
8
)

0
.2

6
(0

.2
5
)

0
.3

3
(0

.3
1
)

0
.4

0
(0

.3
8
)

0
.3

0
(0

.2
8
)

0
.3

7
(0

.3
3
)

0
.4

2
(0

.3
8
)

A
g
g

C
β
-d

is
ta

n
ce

0
.4

9
(0

.4
7
)

0
.6

1
(0

.5
9
)

0
.7

4
(0

.7
2
)

0
.4

3
(0

.4
1
)

0
.5

5
(0

.5
3
)

0
.6

9
(0

.6
6
)

0
.5

7
(0

.5
7
)

0
.6

8
(0

.6
7
)

0
.7

9
(0

.7
8
)

0
.6

7
(0

.6
4
)

0
.7

7
(0

.7
3
)

0
.8

5
(0

.8
1
)

A
g
g

S
ta

ti
c

0
.3

0
(0

.2
8
)

0
.4

0
(0

.3
7
)

0
.5

1
(0

.4
7
)

0
.2

5
(0

.2
3
)

0
.3

4
(0

.3
1
)

0
.4

6
(0

.4
2
)

0
.3

5
(0

.3
4
)

0
.4

5
(0

.4
3
)

0
.5

4
(0

.5
2
)

0
.4

3
(0

.3
9
)

0
.5

1
(0

.4
8
)

0
.5

9
(0

.5
5
)

D
y
n

0
.6

1
(0

.5
3
)

0
.7

0
(0

.6
2
)

0
.7

8
(0

.7
1
)

0
.5

4
(0

.4
6
)

0
.6

5
(0

.5
6
)

0
.7

4
(0

.6
7
)

0
.6

0
(0

.6
1
)

0
.7

0
(0

.6
9
)

0
.7

9
(0

.7
8
)

0
.7

5
(0

.6
4
)

0
.8

2
(0

.7
1
)

0
.8

6
(0

.7
7
)

C
β
-d

is
ta

n
ce

+
D

y
n

0
.6

4
(0

.5
7
)

0
.7

4
(0

.6
7
)

0
.8

2
(0

.7
6
)

0
.5

8
(0

.5
1
)

0
.6

8
(0

.6
1
)

0
.7

7
(0

.7
2
)

0
.6

6
(0

.6
6
)

0
.7

5
(0

.7
4
)

0
.8

4
(0

.8
3
)

0
.7

8
(0

.7
0
)

0
.8

5
(0

.7
7
)

0
.8

9
(0

.8
3
)

S
ta

ti
c

+
D

y
n

0
.6

2
(0

.5
4
)

0
.7

1
(0

.6
3
)

0
.7

9
(0

.7
3
)

0
.5

5
(0

.4
7
)

0
.6

5
(0

.5
7
)

0
.7

5
(0

.6
8
)

0
.6

1
(0

.6
2
)

0
.7

1
(0

.7
0
)

0
.7

9
(0

.7
9
)

0
.7

6
(0

.6
6
)

0
.8

3
(0

.7
3
)

0
.8

6
(0

.7
8
)

A
g
g

C
β
-d

is
ta

n
ce

+
D

y
n

0
.6

7
(0

.5
9
)

0
.7

6
(0

.6
9
)

0
.8

5
(0

.7
9
)

0
.6

0
(0

.5
2
)

0
.7

1
(0

.6
3
)

0
.8

1
(0

.7
5
)

0
.6

8
(0

.6
8
)

0
.7

8
(0

.7
6
)

0
.8

6
(0

.8
4
)

0
.8

1
(0

.7
2
)

0
.8

9
(0

.8
0
)

0
.9

3
(0

.8
6
)

A
g
g

st
a
ti

c
+

D
y
n

0
.6

3
(0

.5
5
)

0
.7

2
(0

.6
4
)

0
.8

1
(0

.7
5
)

0
.5

6
(0

.4
8
)

0
.6

7
(0

.5
8
)

0
.7

8
(0

.7
0
)

0
.6

2
(0

.6
3
)

0
.7

2
(0

.7
1
)

0
.8

1
(0

.8
0
)

0
.7

8
(0

.6
7
)

0
.8

6
(0

.7
5
)

0
.9

0
(0

.8
1
)

E
S

M
-1

b

T
a
b
le

S
1
.

F
u
ll

p
re

c
is
io
n

st
a
ti
st
ic
s
fo
r
E
S
M

-1
b

a
n
d

M
S
A

T
ra

n
sf
o
rm

e
r.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.16.512436doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.16.512436
http://creativecommons.org/licenses/by-nc-nd/4.0/

	The Impact of Protein Dynamics on Residue-Residue Coevolution  and Contact Prediction

