
IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, VOL. 6, 2022 269

Toward the Development of a Multi-Agent
Cognitive Networking System for the

Lunar Environment
Rachel Dudukovich , Dylan Gormley, Shilpa Kancharla , Katherine Wagner, Robert Short, David Brooks,

Jason Fantl, Shruti Janardhanan, and Alexander Fung

Abstract—This paper details the development of a multi-agent
cognitive system intended to optimize networking performance in
the lunar environment. One concept of the future of lunar com-
munication, LunaNet, outlines a complex network of networks.
Challenges such as scalability, interoperability, and reliability
must first be addressed to successfully fulfill this vision. Machine
intelligence can greatly reduce the reliance on human operators
and enable efficient operations for tasks such as scheduling and
network management. Machine learning, artificial intelligence,
and other automated decision-making techniques can be used to
allow network nodes to intelligently sense and adapt to changes
in the environment such as link disruptions, new nodes join-
ing the network, and support for a diverse range of protocols.
Cognitive networking seeks to evolve these technologies into an
autonomous system with improved science data return, reliability,
and scalability. In this paper, we study four main areas as a means
to further develop cognitive networking capabilities: networking
protocol development, analysis of wireless data for modeling and
simulation, development of algorithms for a multi-agent system,
and spectrum sensing technology.

Index Terms—Cognitive networking, cognitive radio, delay-
tolerant networking, multi-agent reinforcement learning, spec-
trum sensing, cross-layer optimization, link quality.

I. INTRODUCTION

FUTURE plans for the lunar communication architecture
detail a wide variety of missions. Within the time frame

of 2018-2028, over 40 lunar missions are planned among
multiple space agencies involving communications between
lunar orbiters, surface mobile vehicles, surface stationary assets,
and Earth ground stations [1]. Space inter-networking will be
a key technology to develop, which must be capable of sup-
porting lunar-Earth and lunar surface-lunar orbit links. The

Manuscript received January 14, 2022; revised March 8, 2022; accepted
March 10, 2022. Date of publication March 30, 2022; date of current ver-
sion June 10, 2022. The work was supported in part by the Cognitive
Communications project funded by the NASA Space Communications and
Navigation program. (Corresponding author: Rachel Dudukovich.)

Rachel Dudukovich, Dylan Gormley, and Robert Short are with the
Communication and Intelligent Systems Division, NASA Glenn Research
Center, Cleveland, OH 44135 USA (e-mail: rachel.m.dudukovich@nasa.gov;
dylan.j.gormley@nasa.gov; robert.s.short@nasa.gov).

Shilpa Kancharla, Katherine Wagner, Jason Fantl, Shruti Janardhanan, and
Alexander Fung were with the SCaN Internship Program, NASA Glenn
Research Center, Cleveland, OH 44135 USA (e-mail: skancha@ncsu.edu;
kwagne27@uic.edu; jfantl@uwyo.edu; sjanardhanan@umass.edu; alexfung@
berkeley.edu).

David Brooks is with SAIC, Cleveland, OH 44135 USA (e-mail:
dave.e.brooks@nasa.gov).

Digital Object Identifier 10.1109/JRFID.2022.3162952

wide level of diversity among nodes makes inter-operability
a challenge within multiple levels of the network stack. In
addition, the network may be highly dynamic, requiring scala-
bility and expandability. It is for these reasons that reliance on
human operators and predefined communication schedules will
become increasingly impractical. Cognitive networking seeks
to develop algorithms and protocols that will sense, decide
and act autonomously according to changes in the network.
This paper outlines the development of a cognitive networking
system prototype to address the challenges of the future lunar
network.

The work discussed in this paper encompasses several
key areas of the cognitive system including system architec-
ture development, delay-tolerant networking, machine learn-
ing/artificial intelligence, and spectrum sensing. The networking
concept relies upon the framework of delay-tolerant networking
(DTN) to mitigate disruptions and to provide a common layer
among nodes. This article builds upon a conference paper [2] of
the same title. However, we expand our previous work in several
key ways. We incorporate physical layer sensing capabilities
to enhance the reliability of the system with hardware-level
knowledge of the environment. In addition, we give an exten-
sive discussion on spiking neural networks and multi-agent
reinforcement algorithm development.

A. Lunar Scenario

National Aeronautics and Space Administration’s (NASA’s)
LunaNet architecture outlines the network infrastructure that
will support future missions to the lunar surface [3]. The
lunar network will consist of a wide variety of nodes includ-
ing mobile and stationary surface assets, orbiters, relays,
and earth ground stations. Each LunaNet node will support
three standard services: networking services, position, nav-
igation, and timing (PNT) services, and science utilization
services. Networking services will create an end-to-end path
for data through a disconnected, time-varying topology, with
many operations transparent to the user. Cognitive networking
addresses many of the challenges presented in the LunaNet
architecture; specifically unlimited scalability, interoperabil-
ity, and enhanced reliably in a highly mobile, intermittently
connected environment.

Of particular interest is the addition of small satellites
under 500kg (smallsats) to the lunar architecture. Smallsats

U.S. Government work not protected by U.S. copyright.

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7305-0688
https://orcid.org/0000-0003-4337-1840

270 IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, VOL. 6, 2022

Fig. 1. Simple lunar architecture.

may provide critical capabilities within the LunaNet archi-
tecture including: acting as infrastructure elements providing
networking and pointing, navigation, and tracking (PNT)
services, as well as supporting science missions by carry-
ing smaller instruments [4]. Instead of traditional network
architectures with a few large spacecraft, these smallsats may
operate as collaborative agents in the future, creating new types
of constellations, formations, and clusters. This enables highly
flexible multi-hop network systems.

The advent of software-defined radios (SDR) has allowed
for even more flexibility and control over the communica-
tion system. SDRs will allow the radio to switch between
NASA and commercial services by supporting multiple proto-
cols. Links may be bi-directional or uni-directional and support
low-rate command channels as well as high-rate data channels.

In this scenario, we envision two classes of networks as
shown in Fig. 1. The first is a Mobile Ad hoc Network
(MANET) on the lunar surface consisting of both robotic
nodes mobile nodes and stationary nodes. Network disruptions
may occur as vehicles enter lunar craters or move out of the
range of other nodes. Delay/Disruption Tolerant Networking
(DTN) protocols can be used to mitigate these disruptions and
allow nodes to collect data for an extended period before need-
ing to offload data to a lunar orbiter. This type of network may
benefit from opportunistic styles of routing, in which a known
network topology may be difficult to obtain.

The second type of network consists of the lunar orbiters,
relays, and Earth ground stations. The connections in this
type of network are well-defined, with known contact times
and the number of participating nodes. This network will
also benefit from the use of Bundle Protocol and Licklider
Transmission Protocol (LTP) to account for periods of discon-
nection. However, this type of network is deterministic and is
quite suited to Contact Graph Routing (CGR) [5].

To this end, we have developed an orbital scenario in
the Satellite Orbit Analysis Program (SOAP) [6] to facilitate
future testing. The scenario uses ephemera data from the Deep
Space Gateway Near Rectilinear Halo Orbit [7] along with
orbital information describing an “ideal” lunar communica-
tions relay system provided by the Inter-agency Operations
Advisory Group [1]. The Gateway and relay satellites provide
the predictable trunk line connection to Earth. From there,
science missions in orbit and on the lunar surface occupy the
opportunistic region closer to the moon. Fig. 2 depicts a part
of this simulated scenario.

Fig. 2. Lunar scenario in SOAP.

II. RELATED WORKS

A wide breadth of technologies is needed to actualize a
cognitive networking system. Considerations range from the
overall network architecture and the role of network nodes,
the network and application layer protocols, software algo-
rithms for higher-level decision making, and physical layer
sensing and control. The next subsections provide elementary
background on each of these technologies.

A. Network Architectures

Cognitive network architectures have been an open research
topic for NASA’s Space Communication and Navigation
(SCaN) program for several years. Initial work was developed
as part of the SCaN Testbed project [8]. Early work explored
the concept of distributed versus centralized decision making,
cross-layer messaging, and basic elements of node discov-
ery [9]. The Cogent architecture outlines several key aspects
that are further developed in this work. The concept of
cross-layer messaging between cognitive radio and cognitive
network layer is introduced. Cogent uses small discovery mes-
sages to establish the presence of connectivity across a pair of
network interfaces. The messages may also include metadata
regarding link characteristics, such as latency and through-
put, that are measured and provided as input to a cognitive
engine. The Cogent concept may act as a protocol gateway that
supports the use of Internet Protocol (IP), DTN, Consultative
Committee for Space Data Systems (CCSDS), and commercial
network stacks.

B. Low Size, Weight and Power Platforms

The technologies discussed throughout this paper are
focused on enabling cognitive communications on low size,
weight, and power (SWaP) platforms such as small satellites
(smallsats) and rovers. There are a number of lunar science
missions with plans to utilize smallsats to enable such tasks
as studying water, ice, and minerals on the Moon [10], [11],
[12], [13]. In addition to science missions, smallsats may plan
a role in the future lunar communication infrastructure [4].
Lunar rovers have been used for science missions over the

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

DUDUKOVICH et al.: TOWARD DEVELOPMENT OF MULTI-AGENT COGNITIVE NETWORKING SYSTEM 271

Fig. 3. High-level HDTN architecture.

Fig. 4. Prototype network stack.

last several decades [14] for surface exploration. These low
SWaP vehicles have enabled significant advances in science,
in part due to the small, efficient, and more agile nature of such
missions. Future lunar missions may benefit from mobile ad
hoc networks comprised of these smaller science missions and
infrastructure nodes. This type of use-case is a focus of many
cognitive networking techniques [15] in which the network
is increasingly dynamic. The technologies discussed in the
next subsections including: delay tolerant networking, spec-
trum sensing, and neuromorphic computing must account for
low SWaP considerations required by such platforms.

C. Delay Tolerant Networking

The LunaNet architecture specifies DTN Bundle Protocol
(BP) as the primary internetworking protocol. The BP network
overlay creates a common layer that is consistent across
multiple heterogeneous network regions or subnets. Many
works enumerate the drawbacks of applying strictly IP-based
(Transmission Control Protocol and User Datagram Protocol)
terrestrial protocols in environments with long propagation
delays and intermittent connectivity [16].

The High-rate Delay-Tolerant Networking (HDTN) project
at NASA Glenn Research Center has been developing a mod-
ular implementation of a DTN bundle agent [17], [18]. The
HDTN software has been released under the NASA Open
Source Agreement and is available on GitHub [19]. Previous
work has been focused on the development of store-and-
forward, UDP, TCP, STCP, and LTP convergence layers. Fig. 3
shows a high-level diagram of the main software components.

The network stack implemented in the prototype system is
shown in Fig. 4. Licklider Transmission Protocol in addition
to Bundle Protocol is featured in the lunar architecture [1]
to support long-distance links with the reliable transfer. Links
from the moon directly to Earth may require this capability.
Wireless LAN nodes on the surface may function within their

own subnetwork, which will transmit data to a lunar relay or
lunar gateway as shown in Fig. 1.

D. Opportunistic Routing in Delay Tolerant Networks

There is a significant body of work discussing the advan-
tages and disadvantages of deterministic versus opportunistic
styles of routing in delay tolerant networks. Delay tolerant
networking has been applied to several different types of
use-cases. The first, which is closely related to the work in
this paper, is space inter-networking. Routing for this type of
network tends to focus on the periodicity of orbiting nodes and
the fact that space communication, for NASA in particular, is
generally scheduled well in advance. For these reasons, simple
static routing or Contact Graph Routing is often deemed suffi-
cient. The other main area of application for DTN is mobile ad
hoc networks in challenging environments such as rural areas,
recent disaster sites, and underwater networks. In this case, the
network is much less structured and predictable. Many oppor-
tunistic routing methods use some form of calculating the
likelihood of contact between pairs of nodes in the network.
Our previous work focused extensively on applying algorithms
based on machine learning and artificial intelligence to these
types of scenarios [18], [20], [21], [22], [23].

Opportunistic Contact Graph Routing (OCGR) assigns a
confidence level to each contact in the contact plan [24].
OCGR uses three main variables to control its behavior. The
base confidence is used with the contact history to estimate
the likelihood of a predicted contact between any two nodes.
The minimum confidence improvement γ is a threshold in
bundle delivery that a path needs to demonstrate to be con-
sidered a valid candidate. The third variable η controls the
number of times a bundle will potentially be replicated to
ensure delivery. To determine the overall confidence level,
OCGR maintains two tables of contacts: the contact plan
of predetermined contacts, and the contact history based on
discovered nodes.

The initial steps of the cross-layer optimization discussed in
this paper build upon the OCGR concept of using CGR-like
shortest path-finding mechanisms, while adding a weight vari-
able, updated through reinforcement learning methods, which
controls path selection based on historical and predicted out-
comes. Section II-F discusses the technologies necessary to
incorporate physical layer measurements to generate optimize
opportunistic routing decisions.

E. Multi-Agent Decision-Making

Effective CGR implementations have been explored using
a variety of classical and machine learning algorithms with
effective success [25]. However, these well-tested approaches
necessarily resolve decisions at the level of the immedi-
ate contact and potentially waste processing resources to
re-appraise routing with changes in network state. These
approaches also face realistic issues in accommodating par-
tial access to and interruption of node and network state
information. Hybrid scenarios as described previously may
benefit from occasional opportunistic exploitation of resource
availability [26], [27], [28].

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

272 IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, VOL. 6, 2022

A more comprehensive model of the CGR problem in
space networks captures the context as a multi-agent system.
Multi-agent techniques are especially adept at optimizing
decision-making in complex, distributed environments [29].
For the CGR problem in particular a multi-agent framework
acknowledges node inter-connectivity and the progressive evo-
lution of network state shaped by the interacting decisions of
the node-agents [30].

In this scenario, each contact acts as a semi-independent
collaborating decision-maker in a shared setting to produce a
set of routing decisions that inform the decisions made by sub-
sequent points of contact [29]. Using a reinforcement learning
approach, the multiple agent nodes linked in the network are
exposed to a series of training scenarios and learn to select pro-
gressively optimized routing schemes in response to a reward
applied to the decisions made every time-step [31]. The objec-
tive is a networked system that makes more efficient decisions
by acknowledging the action of each node [32].

Of particular interest for comparison are two chief MARL
algorithms: Deep Q-learning and Advantage Actor-Critic. Both
algorithms have been widely explored in multi-agent learning
contexts and have shown considerable promise in collaborative
and distributed multi-agent settings, including in networking
problems [33], [34].

In Deep Q-learning [35], a Q-value function is estimated
in each time-step to refine the rational value assigned to each
action available to the agent. Through training, this value func-
tion shapes an optimal process of decision making by each
agent node that is sensitive to the decisions made by the other
agent nodes [31], [36].

Advantage Actor-Critic (A2C) [37] in contrast uses a cen-
tralized value function to “critique” and subsequently shape
the particular utility assessment with which each individ-
ual node actor makes a decision. Replacing the use of the
Q-function, the Advantage function computes a relative value
of each action as informed by the cumulative choices of all
node-actors compared to an average action choice. Since the
critic-assessed advantage function is updated more frequently
than that of the actors, on each time-step the actor value func-
tion is purported to improve more rapidly with critic influence
than without [32], [38].

F. Streaming-SCA Spectrum Sensor

A cognitive agent must be able to sense its environment to
assess possible decisions that may earn it the greatest reward.
While the previous sections focused on the network layer
and above, the communication system will only be fully opti-
mized if physical layer information is conveyed throughout the
system since the network and higher layers ultimately depend
on the quality of the lower layers. To this end, we envision
spectrum sensing technology will play a key role in enabling
cognitive networking capabilities. There are many spectrum
sensing detection methods available. In this subsection, we
will review three common methods used to detect interference.

1) Matched Filter Detector: This technique is optimal
when we know the signal of interest, but not when it is
active/inactive. To increase the robustness of our cognitive

network, we wish to identify characteristics of unknown sig-
nals. Therefore, this technique is not suitable for our network’s
blind detection requirement.

2) Energy Detector: This technique is common as a sim-
ple method to blindly detect RF features of unknown signals.
However, this system suffers from a high rate of false alarms
in environments with changing noise levels, such as space. If
our system misses signal detection, we could interfere with
a neighboring transmission. On the other hand, if our system
detects a signal that is not there, we have missed an opportu-
nity for transmission. Therefore, this technique is not suitable
for our network’s architecture.

3) Cyclostationary Feature Detector: This technique is
desirable when signal detection must be performed blindly
and with high accuracy. Thus, it is typically considered one
of the best choices for detection. However, this technique is
extremely computationally expensive. As such, it is tradition-
ally limited to use with terrestrial receivers. Therefore, this
technique is not suitable for our network’s low size, weight,
and power (SWaP) smallsats [39].

However, there has been a recent development of a low-
SWaP Cyclostationary Feature Detector application known as
the Streaming-SCA Spectrum Sensor [39], [40] (henceforth
referred to as simply the sensor). This sensor is compatible
with smallsats, can identify RF signals blindly, and maintains
high levels of accuracy even through low SNR values and
co-channel interference.

G. Introduction to Neuromorphic Computing

Formally, artificial intelligence program is defined as a soft-
ware system that can sense, reason, act, and adapt [41]. The
first generation of artificial intelligence was a rules-based
structure that emulated classical logic to draw reasoned con-
clusions within some specific problem domain. The second and
current generation of artificial intelligence focuses on sensing
and perception, as exemplified by deep learning networks. As
the field progresses, the focus turns to ensure artificial intel-
ligence can be on par with human cognition, which includes
tasks such as interpretation and autonomous adaptation. This
transition is imperative to overcoming the brittleness of many
such algorithms. This brittleness stems from operating in
a deterministic environment that does not necessarily have
access to situational context and the true stochastic nature of
scenarios.

Neuromorphic computing involves the use of circuits that
emulate biological structures in the nervous system. Such
structures offer possible algorithms that can deal with the
ambiguity found in the everyday world. The next generation
of artificial intelligence should strive to account for novel situ-
ations to automate human-like activity. The key challenges of
neuromorphic computing work to address matching a human’s
adaptability and ability to respond to environmental stim-
uli [42]. Our current work focuses on spiking neural networks
(SNNs), a type of non-traditional deep learning model that can
be trained on-chip using a new generation of neuromorphic
processors [43].

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

DUDUKOVICH et al.: TOWARD DEVELOPMENT OF MULTI-AGENT COGNITIVE NETWORKING SYSTEM 273

While artificial neural networks (ANNs) perform reason-
ably on traditional CPU and GPU architectures, spiking neural
networks will demonstrate improved performance on special-
ized neuromorphic hardware. In addition to performance ben-
efits, current research indicates neuromorphic processors may
allow for complex computing on low power platforms [44].
For this reason, neuromorphic processors may be a key
component to enabling artificial intelligence in the space
environment.

III. SPIKING NEURAL NETWORK DEVELOPMENT

In this paper, we consider the benefits and relationship
between two major subsets within the field of artificial intel-
ligence and machine learning: artificial neural networks and
reinforcement learning. Both approaches may provide key
roles towards learning optimal network policies. Artificial neu-
ral networks can model complex functions based on observed
data. Current work in the field of neuromorphic computing
may reduce the SWaP requirements of traditional proces-
sors and GPUs; thereby making techniques such as spiking
neural networks quite feasible for the space environment.
Reinforcement learning will provide the capability to modify
network models and policies online, as a reaction to current
changes in the network.

This section focuses on evaluating publicly available data
sets, developing concepts for a SNN predictive model, and
simulation results. An offline learning approach was used to
perform data exploration, feature engineering, as well devel-
opment of the initial SNN model. Future work will seek to
integrate this model into the overall cognitive system and
incorporate online learning capabilities.

A. Data Set Analysis

As a preliminary step towards an ANN or SNN model,
algorithm development, and implementation, we sought pub-
licly available data sets related to delay-tolerant and mobile ad
hoc networks for preliminary analysis. Eventually, three main
data sets became the focus of our work: the ORBIT testbed
data set [45], the DieselNet data [46], and the Barcelona
Neural Networking Center (BNNC) Graph Neural Networking
Challenge 2021 Data Set [47].

1) ORBIT Data Set: Our initial data set consists of mea-
surements from the Rutgers Open-Access Research Testbed
for Next-Generation Wireless Networks (ORBIT) [45]. This
data set includes the received signal strength indicator (RSSI)
for each correctly received frame at the receiver node when
various levels of noise are injected on the ORBIT testbed.
The Rutgers ORBIT testbed data set is particularly of interest
since the Cognitive Communications project at NASA Glenn
is building an RF testbed similar to the ORBIT concept. The
ORBIT testbed data can give insight into metrics and data set
formats useful for machine learning.

The features used in this analysis include the following:
• Received: whether the signal was received or not

(Boolean value)
• Error: indicates if an error has occurred while capturing

the RSSI (Boolean value)

• Noise: the amount of noise injected
• t_x: x-coordinate of the grid node that was configured as

the transmitter (integer value)
• t_y: y-coordinate of the grid node that was configured as

the transmitter (integer value)
• r_x: x-coordinate of the receiver node (integer value)
• r_y: y-coordinate of the receiver node (integer value)
The preprocessed data set resulted in 1,218,000 data points.

Our initial problem formulation was to predict the RSSI value
using several regression techniques. The methods used were:
multiple linear regression, ridge regression (L2-norm), LASSO
regression (L1-norm), random forest regression, Bayesian
ridge regression, and finally XGBoost regression. To assess the
performance of the regression models, the root mean squared
error (RMSE) was being used. The RMSE measures the aver-
age magnitude of the error. Since the errors are squared before
they are averaged, the RMSE gives a relatively high weight
to large errors. To understand if large errors are present, the
RMSE is particularly useful. A training, validation, and test
split of the original dataset was created at 75%, 12.5%, and
12.5% respectively.

Lastly, the optimal hyperparameters used for XGBoost
regression were found using AWS SageMaker. These hyper-
parameters were used to inform the model created by hand
as well. This approach of both “hand-done” and automated
tuning tended to yield the best result. Ultimately, we con-
cluded that additional higher layer metrics such as packet loss
and per-packet delay combined with physical layer metrics,
such as the RSSI value would be more relevant to a cognitive
networking system. For this reason, we continued to explore
additional data sets.

2) DieselNet Data Set: While the ORBIT data set includes
interesting characteristics such as varying noise levels injected
into the system, the data set is based on stationary nodes that
do not truly emulate a DTN environment. For this reason, we
evaluated the DieselNet data set [46]. DieselNet is a network
of 35 buses on the campus of the University of Massachusetts,
Amherst, which traveled planned routes every day through-
out 5 months in the Spring 2006 semester. The buses were
equipped with radio transmitters, and the trace set includes
data for each one-way connection when the buses came into
close enough proximity to transfer data. The data set provided
60,000 one-way contacts.

DieselNet approximates a terrestrial DTN environment well
due to several factors. The link quality in DieselNet can be
measured by throughput or the amount of data transferred over
a connection per unit time. For our lunar scenario, bus mobil-
ity roughly simulates the movement of vehicles on the lunar
surface. The regularity of bus routes could be envisioned as
the movements of lunar rovers performing periodic mainte-
nance activities. However, there are also weaknesses with this
data set. Data collection was imperfect: the GPS coordinates
were the same for both buses for each contact, the reported
time duration was negative for a small fraction of the contacts,
and some were missing data fields. After filtering these out,
about 50,000 of the initial 60,000 contacts remained. However,
many of these were “repeat” contacts – the same two buses
phased in and out of connection up to roughly ten times. We

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

274 IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, VOL. 6, 2022

ultimately concluded the DieselNet scenario and data set did
not resemble the space environment closely enough to warrant
further investigation of the data.

3) BNNC Graph Neural Networking Challenge Data Set:
The data set we found most useful was provided by the
Barcelona Neural Networking Center (BNNC) for their Graph
Neural Networking (GNN) Challenge 2021, in which the aim
was to create a scalable network digital twin using graph neu-
ral networks. By providing a snapshot of a network state, the
goal was to create a scalable network digital twin based on
neural networks that accurately estimate various performance
metrics of a network [47]. Our work adapts the BNNC data
set for a spiking neural network application. Each sample sim-
ulates a network scenario which comprises of three different
aspects:

• Network topology
• Routing configuration
• Source-destination traffic matrix

The scenarios are labeled with network performance met-
rics defined by the simulator, including per-source-destination
performance measurements (mean per-packet delay, jitter, and
loss), and port statistics (e.g., queue utilization, average packet
loss). The focus of the GNN Challenge was to predict the mean
per-packet delay on each source-destination path using GNNs
and the provided data set.

The BNNC Graph Neural Networking Challenge Data Set
is currently the most complete and relevant data set for the
project that we have found. This data set was meant to be used
with Graph Neural Networks rather than traditional ANNs or
SNNs. During our preprocessing of the data set, we came
upon challenges for representing graph-structured data in more
traditional formats (tabular data). Since networks can be rep-
resented as graphs, our future work will dive more deeply into
the data representation as well as GNNs. Existing work shows
GNNs may be useful for network modeling [48].

The training dataset provided by BNNC contains samples
simulated in topologies of 25 to 50 nodes, including two differ-
ent network topologies for each topology size. The validation
dataset provided by BNNC contains samples on larger network
topologies up to 300 nodes. The test dataset provided also has
a similar layout to the validation dataset.

B. Spiking Neural Network Approach

Spiking neural networks are different from traditional artifi-
cial neural networks as they incorporate time as a dependency
within their computations. Neurons are still considered the
basic processing elements. However, at some instance in time,
one or more neurons might send out impulses, or a spike, to
neighboring neurons through connections known as synapses.
The travel time is considered zero for this. Neurons also exist
in a local state with rules governing their actions and tim-
ing of spike generation. This network is a dynamic system
where individual neurons interact through spikes. One of the
main differences between modern deep learning and how
the brain functions are that the brain encodes information
in spikes rather than continuous activations. SNNs are on
the spectrum of ANNs that closely mimic natural, neurobi-
ological neural networks. Key features of the SNN structure

include information about the neuronal and synaptic state
alongside time. Another highlight of SNNs is that they perform
favorably on neuromorphic hardware with properties such
as low power consumption, fast inference, and event-driven
information processing [49].

After finding a suitable data set as discussed in the previous
section, the next step of our work was to begin to under-
stand how to process this data using an SNN. snnTorch
is a Python package for performing gradient-based learn-
ing with SNNs [50]. It extends the capabilities of PyTorch,
taking advantage of its GPU accelerated tensor computa-
tion and applying it to networks of spiking neurons. Pre-
designed spiking neuron models are integrated within the
PyTorch framework and are treated as recurrent activation
units. While all of the available models in snnTorch can
run on CPU, they can be loaded onto CUDA and run
on GPU.

1) Data Encoding: SNNs are made to exploit time-varying
data. If the goal is to create an SNN, it makes sense to
use spikes as inputs too. However, not all datasets are time-
varying, such as the BNNC dataset described. It is quite
common to use non-spikes as well. Two methods may be
used to process more traditional datasets (such as the well-
known MNIST image dataset) that do not vary with time.
The first method is to simply pass the same data sample into
the network at each time step. While this approach is quite
straightforward, it does not fully exploit the temporal dynam-
ics of SNNs. This approach was used for the BNNC dataset for
the current set of experiments. However, it is worth discussing
the second method, which is to convert the data into a spike
train of a certain sequence length and input it into the network.
While this method is more complicated, it gives insight into
what data characteristics to potentially look for when collect-
ing data in the future if the goal is to employ an SNN to
process it. The module snntorch.spikegen (referring to
spike generation) contains a series of functions that simplify
the conversion of data into spikes. There are currently three
ways to convert the data into spikes:

• Rate coding: uses input features to determine spiking
frequency

• Latency coding: uses input features to determine spike
timing

• Delta modulation: uses the temporal change of input
features to generate spikes.

In rate coding, each normalized input feature Xij is used
as the probability an event (spike) occurs at any given time
step, returning a rate-coded value Rij. This can be treated
as a Bernoulli trial: Rij ∼ B(n, p) where the number of tri-
als is n = 1, and the probability of success (spiking) is
p = Xij. Explicitly, the probability that a spike occurs
is P(Rij = 1) = Xij = 1 − P(Rij = 0). A Bernoulli event
is an event for which the probability of occurrence is p and
the probability of the event not occurring is 1 − p. The event
has two possible outcomes. A Bernoulli process is a sequence
of Bernoulli trials. Among other conclusions that could be
drawn, for n trials, the probability of n successes is pn.

P(n) =
{

1 − p for n = 0
p for n = 1.

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

DUDUKOVICH et al.: TOWARD DEVELOPMENT OF MULTI-AGENT COGNITIVE NETWORKING SYSTEM 275

In rate coding, input features are used to parameterize a bino-
mial distribution, which is then sampled from to determine
whether or not a spike occurs. If the input falls outside of
[0, 1], this no longer represents a probability. Such cases
are automatically clipped to ensure the feature represents a
probability.

In latency coding, each feature corresponds to a single spike.
The intensity of the feature determines how fast the spike
occurs. Options for linear or logarithmic firing times are avail-
able. Temporal codes capture information about the precise
firing time of neurons. A signal spike carries much more
meaning than in rate codes which rely on firing frequency.
Features closer to 1, will fire earlier and features closer to 0
will fire later. Larger input means a fast spike, while a small
input means a late spike. There are two arguments to pass in
when performing latency coding. The first argument is τ . The
higher the τ value is, the slower the firing will be. The sec-
ond argument is the threshold, which represents the membrane
potential before firing. One major advantage of latency coding
over rate coding is the increased sparsity of spikes. If neurons
are constrained to firing a maximum of once over time, then
this promotes low-power operation.

Delta modulation is based on event-driven spiking, as biol-
ogy is event-driven and neurons rely on change. It takes the
difference between each subsequent feature across all time
steps. By default, if the difference is both positive and greater
than the threshold, a spike is generated.

2) Spiking Neuron Models: There is a range of neuron mod-
els to consider. The spectrum ranges from the biophysically
accurate Hodgkin-Huxley model to the simplified artificial
neuron that is rife in deep learning. In between both the
Hodgkin-Huxley model and the artificial neuron is the leaky
integrate-and-fire (LIF) neuron, model. It takes the sum of
weighted inputs, much like an artificial neuron. Rather than
passing it directly to an activation function, it will integrate
the input over time with leakage, much like an RC circuit.
If the integrated value exceeds the threshold, then the LIF
neuron will emit a voltage spike. The LIF neuron abstracts
away the shape and the profile of the output spike. It is sim-
ply treated as a discrete event. As a result, information is not
stored within the spike, but rather the timing (or frequency)
of spikes. Currently, snnTorch supports four types of LIF
neurons:

• Lapicque’s RC model
• Non-physical first order model (also known as leaky

neuron model)
• Synaptic conductance-based neuron model
• Alpha neuron model
For the experiments in this project, the non-physical first-

order model and synaptic conductance-based neuron model
are used. The synaptic conductance-based LIF neuron model
differs from the LIF neuron model as it takes into account the
more realistic scenario of the decay of the synaptic current.

3) Simulation Approach: The BNNC data set was selected
to develop the SNN predictive model, due to the extensive met-
rics found in the data set, as well as the data volume (46.6 GB
worth of tabular data after preprocessing) and overall quality.
The main target of focus is the average packet loss in this

TABLE I
SNN TRAINING AND TEST SET SUMMARY

experiment. It is hypothesized that a deep learning regression
model can be applied to predict any target of interest from the
variables described for linkUsage.txt.

The initial set of features selected were based on
the data found in simulationResults.txt and
linkUsage.txt. In addition to the target variables that
were dropped, the Boolean feature of whether the link exists
or not was dropped. In addition, if the link did not exist, there
was a −1 in place for all the link usage measurements. These
rows were dropped as well, as focusing on the input for which
links exist would produce a more accurate regression model.
This manual selection resulted in 21 input features, and
therefore 21 nodes in the input layer. There are 1000 nodes
in the hidden layer. The output layer will contain one node as
this is a deep learning regression problem of predicting the
value of the average packet loss based on the other features.
The number of nodes in the hidden layer was inspired by the
snnTorch tutorials given in the documentation, although
this can also become a hyperparameter that can be further
tuned for models in the future.

Principle Component Analysis (PCA) was used to further
reduce the dimension of the data, resulting in a smaller data set
consisting of 11 features. We consider both the initial data set
(without feature engineering) and the reduced data set (with
feature engineering).

Table I summarizes the train and test sets both with and
without feature engineering. In order to be fed into the model,
the data must be of type tensor. Tensors are dimensional data
structures that can exist in dimensions ranging from 0 to n. For
the data to be fed into the SNN, it must be of the format [time×
batchsize × feature_dimensions]. In addition, for the data to
be run in a PyTorch deep learning model, the DataLoader
object must be used to create and iterator that loads batches of
data into the model. The goal is to create an input spike train to
pass into the network. Arbitrarily, 25 time steps were chosen to
simulate across the 21 input neurons, so the dimensionality is
25×21 in the case without feature selection, and 25×11 using
the PCA reduced data set. Neural networks process data in
minibatches, and the minibatch size chosen for this experiment
was 128. Therefore, the dimensions as each input spike is
passed through the SNN is [25×128×21] for both the training
and test sets without feature selection. With feature selection,
the shape becomes [25 × 128 × 11]. Moreover, if there was
extra data that did not meet the dimension standards originally
set by the DataLoader object, that batch was dropped. This
was done by setting the DataLoader object’s parameter of
drop_last to True.

4) Modeling Results: The results of the accuracy, as per-
centages, for the training and test data sets for the leaky SNN

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

276 IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, VOL. 6, 2022

TABLE II
ACCURACY RESULTS OF LEAKY AND SYNAPTIC

MODELS (ALL FEATURES) (%)

TABLE III
ACCURACY RESULTS OF LEAKY AND SYNAPTIC

MODELS (FEATURE ENGINEERING) (%)

Fig. 5. Accuracies of training and test data for the leaky SNN model without
feature engineering.

Fig. 6. Accuracies of training and test data for the synaptic SNN model
without feature engineering.

and synaptic SNN are shown in Table II. These results were
gathered over the course of only one epoch. After one epoch,
the final accuracies of the leaky SNN and synaptic SNN are
both 89.94% on the test data. In addition, the results when
applying feature engineering to the model are also provided
to attempt to determine if reducing the dimensionality of the
data provides an improvement in loss and accuracy for both
types of SNN models. The accuracy results when feature engi-
neering is applied are shown in Table III. After one epoch as
well, the final accuracies of the leaky SNN and synaptic SNN
are both 91.41% and 89.06%, respectively, on the test data.
The training and test accuracies of the leaky SNN model with-
out feature engineering are shown in Figure 5. The training
and test accuracies of the synaptic SNN model without feature
selection are shown in Figure 6.

In the instance with the leaky SNN model without feature
engineering, this model may contain some overfitting, as there

is the greatest discrepancy between the training and test accu-
racy compared to all the other models. Interestingly, a similar
discrepancy is present in the synaptic SNN model with fea-
ture selection in Table III. However, when running the leaky
SNN model with feature selection, there isn’t as great of a
difference in accuracy between the test and training sets. It
could be hypothesized from this that the leaky SNN model is
less prone to overfitting, or may even be more suitable when
there are fewer features present. However, the synaptic SNN
model may be more suitable to scenarios when more features
are present. It would be important to further test this hypoth-
esis on various data sets for which feature selection can be
performed.

IV. MULTI-AGENT REINFORCEMENT

LEARNING APPROACH

While SNNs may prove to be a useful decision-making ele-
ment, our current simulations have been conducted with offline
learning using predefined data sets. In a dynamic network,
decision-making will need to occur online so that the system
will be able to react to changes in near real-time. For this rea-
son, we investigate several multi-agent reinforcement learning
approaches, with the thought that SNNs may be incorporated
at some point as the function approximation mechanism as
discussed in deep Q-Networks.

Our initial multi-agent reinforcement learning (MARL)
approach abstracts many of the physical layer details away
from the problem. While this may be an oversimplification,
it allows for basic algorithmic concepts and simulations to
be developed. The next section gives an overview of a basic
MARL approach to cognitive routing.

This routing strategy takes an opportunistic and online
approach. The network nodes detect neighboring communi-
cation nodes at the time of data bundle transmission and
use one or several link quality assessment metrics, possibly
in association with a node-pair connection history, to com-
pare the set of prospective one-hop connection links and
select the optimal link for transmission to the next node.
Compared to CGR approaches, these ad hoc strategies are
well-equipped to enhance the dynamic adaptability of space
networks and address unexpected changes in network topol-
ogy and failures at the level of the individual communication
node. Opportunistic routing strategies also enable the prospect
of discovery of network routing “short-cuts”: routing paths
overlooked or unplanned in contact graphs that optimize trans-
mission metrics, potentially in conjunction with the use of
other system resources [26], [27], [28].

These opportunistic approaches have been widely con-
fronted using reinforcement learning algorithms able to confer
these online benefits with minimal training and across network
types. This learning framework reinforces optimal action
selection in each decision making context by providing agents
that take a certain action in response to an environmental
observation with a numerical reward that reflects the value
of that action for optimizing a target system metric. Agents
are motivated to maximize these rewards, driving learning of
optimal decision making through a variety of value-assigning

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

DUDUKOVICH et al.: TOWARD DEVELOPMENT OF MULTI-AGENT COGNITIVE NETWORKING SYSTEM 277

Fig. 7. Multi-agent reinforcement learning model.

functions [51]. An interpretation of these basic learning frame-
works applied to network settings are depicted in Fig. 7. These
network learning frameworks typically consider the agent to
be the communication node preparing to pass a packet of data
to its next hop and the action set as the space of possible
transmission manipulations that may be applied to the current
data bundle. These include selection of one of the links from
the set of proximate neighbor nodes and, in DTN scenarios,
the option to store the data bundle in the node agent’s own
buffer (delaying immediate transmission).

Agent-nodes’ action choices are delivered to the processing
unit that records and updates the state of the network envi-
ronment, and then returns to the node-agent the observation-
reward pair that reflects the value assigned to the change in
network state and ultimately drives node-agent learning and
improved selection of transmission links in subsequent time
steps.

The reward and observation received by the agent varies
across the literature for the dynamics of transmission in a par-
ticular implementation. Reward values feature both singular
and composite interpretations of the value that the selected
action conferred to optimizing network metrics. These have
included the negated network response time [52], physical
layer characteristics of the next hop (signal-to-interference-
plus-noise ratio) [53], and an assortment of other measures of
combined network node resource consumption. Observations
capture the network state as a whole and often include
information specific to individual nodes and node-pairs,
including remaining queue capacity and estimated distances
from possible next-hop recipients to the ultimate intended data
destination.

The first generation of these applications took a single-
agent approach to learning, with an assumption of autonomy,
assigned to the focal node alone. Deriving from this assump-
tion, single-agent frameworks shape node-agent decisions
based on analysis of a generalized network environment, in
which the actions of other network nodes are indistinguishably
combined and treated as environmental noise. Focus on these

frameworks in the first generation of route-learning approaches
stemmed from both adequate performance through applica-
tion of the routing algorithm and the presumption of a lack
of (especially movement) control among non-focal network
nodes in common, terrestrial mobile routing contexts [54].

These initial approaches opened the doors to the benefits
of taking a learning approach to network routing. In prac-
tice, learning in these frameworks suffered from an inability to
produce optimal decision-making in contexts where the focal
agent reasoning and learning occurred in proximity to that of
other similarly-reasoning agents - contexts where the decisions
and learned-policy updates made by fellow agents influence
the environment state and its evolution in unpredictable ways.
These interactions degrade the previous stability of the envi-
ronment, preventing the agent from relying on a predictable
association between action and outcome [55]. The result is a
combinatorial explosion of state space that outpaces the ability
of processing resources to trace dynamic changes and a failure
of learning to converge to the optimal policy.

The response to these issues was to isolate and consider
directly the influence of the decision making of each agent
on the networking environment. This perspective reframes the
networking problem as a multi-agent problem wherein the
intermingling impact of the many agents on the networking
environment is considered explicitly.

To capture the influence of multiple agents on the envi-
ronment, the current state is passed through observations
explicitly including attributes of the multi-agent nature of the
setting. Each agent computes its value function, shaped by
its unique experience history and differential experience in
a particular node neighborhood [29], [31], [56]. The result
is a networked system that makes more efficient networking
decisions by acknowledging the action of each node, consid-
ering the impact of joint actions, and providing to each agent
enhanced system-wide awareness [55], [57], [58].

Our general approach to multi-agent learning sought to pro-
duce a system in which each network node worked as an
independently reasoning, equivalently-equipped autonomous
agent that learned with experience how to select data packet
manipulation actions to optimize expected future rewards
reflective of key network metrics. Following a large propor-
tion of the literature, in this preliminary work, we focused on
minimization of source-to-destination transmission latency as
the optimization target for learning. A goal for extension is to
expand this metric to a composite measure that more broadly
reflects key measures of link quality. The particular application
of learning within this objective was the agent nodes’ selec-
tion of 1) whether to store the current data packet in its queue
or pass it on to a new network node and 2) in the case of the
latter, the particular node (in the form of node-identified link)
to which to send the data.

1) Multi-Agent Simulation: We framed the dynamics of
the simulated network environment in the model established
by OpenAI Gym [59]. The model permits custom defini-
tions of step-wise, dynamic, and partially-observable envi-
ronments that support Markovian decision-making and align
with the computation framework necessary for the implemen-
tation of the action-observation-reward cycle that characterizes

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

278 IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, VOL. 6, 2022

reinforcement learning. In addition to its accessibility, the Gym
model was also selected for its compatibility with Ray learning
models. Ray [60] is an open source Python machine learning
library focused on distributed learning. It provides an API for
multi-agent environments as well as a number of well-known
multi-agent models to train with. It also has the ability to
train a number of models on a distributed system, which can
improve training times.

We selected multi-agent-compatible Deep Q-learning [35]
as a the first target for model development and testing. In
traditional Deep Q-learning, with state-action pairs as input,
a neural network estimates the output of a Q-value func-
tion that computes the total expected reward associated with
a sequence of particular actions in a learning environment.
During decision-making, processing of the current state input
yields a value assigned to each possible action; the agent
selects that highest-rated action to secure the greatest reward
prospect, shaping optimal action sequences [33], [34].

In response to these shortcomings, the literature has effec-
tively modified core Q-learning concepts - along with several
branches - to better tune the approach to the complexity of
multi-agent learning [55], [61]. One of the first and most basic
variations [62] addressed the challenge of multiple agents by
simply distributing the reasoning machinery across agents.
This independent Q-learning provided each agent with its
memory and set of neural networks to approximate an agent-
specific Q-function and build a unique policy resolved to the
specific and differential experience history of that agent. The
approach led to a leap in route learning performance [63]
and continues to be frequently used in network learning
problems [57].

Our Deep Q-learning implementation followed this basic
modification strategy, using Ray tools to provide each node-
agent its Q-network, target network, and experience replay
memory buffer to enable independent, equivalent, and parallel
reasoning by each agent [62], [63]. Notably, the multi-agent
capabilities of the independent Q approach in large and com-
plex network contexts can be countered by slowed learning,
often in conjunction with the computational costs of process-
ing by the number of neural networks [56], [64]. We selected
this approach despite these issues as we felt a Deep Q approach
offered a straightforward and accessible implementation com-
patible with several learning tools. This basic implementation
also offered a valuable foundation for comparison against
the considerable literature background that has used a simi-
lar approach. In addition, this could be used to build a space
network-specific baseline against which to compare enhanced
models.

We implemented the initial learning model using the Ray
framework with underlying RLlib libraries. We used built-in
Ray tools to access a Deep Q-network using a PyTorch founda-
tion with a modified configuration to include a target network
and experience replay buffer that would be applied to each
agent. We injected into this framework the Gym-based Python
network simulator that encompassed a node agent module
definition. Internal Ray configuration modules allowed us to
specify a small set of two distributed roll-out workers assigned
to each agent and a comparable, though independent, initial

Fig. 8. Bundle delivery latency during training.

policy assigned to each agent. The result was a learning model
that acted on each communication node in the network as
an agent and attributed to each agent a unique set of Deep
Q-networks for learning.

We applied this framework to a network comprising 50
similar agent-nodes. In the dynamics of the network simula-
tion described above, routing decisions affecting the collection
of randomly generated data packets were observed over 50
episodes of 1000 time steps each. Routing behavior was
assessed at the level of the complete route path (i.e., source
to ultimate destination). Focal metrics included the total per-
packet transmission latency, the number of hops utilized in
a complete route, and the proportion of packets successfully
delivered to their ultimate destination within an episode. To
evaluate the influence of packet traffic on performance, we
additionally explored routing behavior under different packet
generation constraints. We capped the number of packets
generated during an episode to an arbitrary Minimum (500
packets), Moderate (1000), and High (1500) packet traffic con-
ditions and recorded the described metrics resulting from each
test run following learning. In support of future progress, here
we present preliminary findings describing learning behavior
using the Ray-enabled independent Deep Q-network approach
in the simulated space network.

During training, per-packet delivery latency varied regu-
larly between 8.1 and 18.7-time steps, with a typical packet
reaching its destination within 11.4-time steps. The delivery
latency profile produced during learning is displayed in Fig. 8.
Despite the persistent variability, packets generated during the
last quartile of episodes tended to be delivered to their destina-
tion 0.1-time steps more quickly than those generated during
the first three quartiles. While this difference seems unlikely
to have reached statistical significance, it is consistent with
some degree of route learning by agent nodes. This potential
learning was made more concrete during model testing under
different conditions of network load, for the maximum number
of generated packets. The interaction between load condition
and packet delivery latency is demonstrated in Fig. 9.

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

DUDUKOVICH et al.: TOWARD DEVELOPMENT OF MULTI-AGENT COGNITIVE NETWORKING SYSTEM 279

Fig. 9. Bundle delivery latency under varying network load.

V. RF-FEATURE-ENHANCED COGNITIVE NETWORK

Artificial intelligence and machine learning techniques, such
as those found in Sections III and IV, address complex, long-
term multi-agent patterns not easily recognizable to humans
utilizing processing performed at a centralized node. However,
these techniques currently lack the mechanics to adapt to real-
time interference, risking mission failure. In this section, we
discuss a method to enhance the robustness and decision-
making of cognitive networks by utilizing the sensor discussed
in Section II.

Unidirectional links have no form of feedback to verify if
a transmission has been received. In this case, we first verify
that the allocated spectrum is free as expected. If the sensor
detects interference at the planned transmission frequency, the
agent selects the next best contact from its contact plan. This
is similar to the “listen to talk” method but differs in that it can
tell the difference between noise and a modulated signal (user).
This is important because noise is typically temporary (such
as a solar flare), so we assume that we can safely transmit over
this channel with some confidence link quality will improve.
Transmitting over user interference is not desirable because
the interference will likely be over a longer period.

The cognitive radios that will be used for bi-directional
links will be using some form of an adaptive waveform, such
as DVB-S2. One adaptive waveform of particular interest is
described in [65]. This adaptive waveform utilizes a spec-
trum sensor. In this waveform, not only does the spectrum
avoid/adapt to interference and noise, but the awareness is
passed back to a mission operations center to incorporate into
a database, enhancing the agent’s predictions.

A. System Architecture

While opportunistic algorithms may be a research topic that
has been of interest for several decades, there is still a large gap
in the technology required to implement this type of network in
an actual spacecraft. For this reason, we feel the first step is to
build upon the CGR concepts discussed in previous sections

and focus on first achieving an intelligent system with both
DTN and software-defined radio technology. This section will
discuss the technology required for a single node prototype
system. Each node is a software-defined radio platform and
will have a data flow similar to Fig. 10. This is a general
architecture that could be applied to a variety of intelligent
nodes such as smallsats or mobile surface assets such as rovers.

In this initial architecture, a CGR-style contact plan is
used to indicate a pre-planned contact schedule between a set
of known nodes. In addition to data rates and contact time
between nodes, the plan may also include service parameters
such as frequency. To augment this plan, the spectrum sensor
continuously processes received I/Q. It produces a list of where
users are located and their bandwidth. The spectrum manager
provides post-processing of the spectrum sensor by applying
techniques such as time averaging and user time-to-live. The
cross-layer engine cross-references the available contacts with
the interferers. If the primary contact is unavailable due to
interference, the list moves to a secondary contact, and so on.

Once the cross-layer engine has determined a contact to
communicate with, it commands the link controller to config-
ure the necessary waveform parameters such as modulation
and coding, and the necessary RF parameters such as cen-
ter frequency, gain, and sample rate. The waveform used is
determined by the link controller. Of particular interest is the
adaptation of the waveform’s modulation and coding using
ACM. The RF Frontend’s receiver constantly receives I/Q sam-
ples centered at a given frequency and passes them to the
spectrum sensor. The received samples are also received by
the waveform, in parallel, when the waveform is enabled.

VI. FUTURE WORK

This section discusses observations from our current work
and plans for potential improvements.

A. Algorithm Development

In the future, it may be useful to use a time-varying data
set to fully exploit the temporal aspect of the SNN. There are
three main characteristics for data when it comes to feeding
in spiking input. The first characteristic is if the data contains
‘spikes’. Biological neurons communicate via spikes. Many
computational models of neurons simplify this voltage burst
into discrete, single-bit events: either a ‘1’ or ‘0’. This is far
simpler to represent in hardware, such as a neuromorphic pro-
cessor, than a high precision value. The second characteristic
is sparsity. Neurons spend most of their time at rest, silenc-
ing most activations to zero at any given time. Not only are
the sparse vectors/tensors (meaning they contain many zeros)
cheap to store, but computations with them may be cheaper.
We do not need to read many of the network parameters from
memory. This means neuromorphic hardware can be extremely
efficient. The third characteristic is static suppression or event-
driven processing. Information is processed only when new
information is present in the process. Conventional signal pro-
cessing requires all channels or pixels (when using an image
or video data) to adhere to a global sampling/shutter rate,
which slows down how frequently sensing can take place.

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

280 IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, VOL. 6, 2022

Fig. 10. SDR data flow diagram.

Event-driven processing now only contributes to sparsity and
power efficiency by blocking unchanging input, but it often
allows for much faster processing speeds [50].

In addition, our multi-agent approach used deep Q-learning
models found in existing packages (PyTorch, RLlib). These
do not exploit the advantages of SNNs, such as low power
consumption and faster processing speeds. Future work may
include incorporating an SNN into the reinforcement learning
agent. Existing work applying SNNs to DTN routing shows
an advantage over CGR methods [52], but has not yet taken
a multi-agent approach.

Characteristics for an ideal lunar networking data set may
be partially derived from more general data sets such as the
BNNC Graph Neural Networking Challenge Data Set. A data
set specific to the lunar networking environment could be
developed in a similar method. The BNNC data was gen-
erated using an OMNeT++ simulation of several different
network topologies. Orbital simulations such as those dis-
cussed in Section I could be used as an input to a network
simulator to generate a scenario specific to the Moon, with
appropriate propagation delays, data rates, and protocol stack.
In addition, it is desirable for the data set to include both
network layer (packet loss, packet delay) and physical layer
metrics (RSSI) so that the relationship between the layers can
be used to optimize the overall system. To this end we are
continuing to develop higher fidelity simulation environments.
Synthetic lunar data sets constructed from existing surface
images have been used to train neural networks for rover
localization services and surface analysis [66], [67]. The devel-
opment of synthetic lunar data sets will likely be needed for
many applications, including networking, due to the sparsity
of available data.

B. Hardware Integration and Protocol Development

We anticipate that Internet Protocol will play a key role
in developing the interface between the bundle layer and
software-defined radio. Additional work is needed to rec-
oncile traditional IP routing with the DTN bundle layer
(application layer) style routing discussed in this paper.
Any feasible routing method for the future lunar network
should maintain compatibility with commercial providers and

such networks may appear as a black box to any cognitive
agent.

Additionally, to enable opportunistic routing, we envision a
method of autonomously discovering when neighboring nodes
are in range. This discovery must be handled first at the
physical layer, and then may trigger a network layer proto-
col to advertise connectivity information. DTN IP Neighbor
Discovery (IPND) is an Internet-Draft protocol outlining the
mechanism for previously unknown DTN nodes to exchange
connectivity information to allow them to begin to commu-
nicate with one another [68]. This method uses discovery
beacons consisting of small UDP datagrams that allow nodes
to advertise their existence to one another. Any node using
an IP-based convergence layer may participate in the dis-
covery process. This is done as part of the Bundle Protocol
overlay concept, so that heterogeneous networks may still
exchange data using the commonality of the bundle layer and
IP underlay. In addition to the IPND concept, we may wish to
investigate discovery mechanisms used in terrestrial protocols.

Perhaps the most pressing issue related to opportunistic
space networks is the hardware considerations required to
enable this technology. The first challenge is that the phys-
ical layer must be able to detect compatible frequencies. We
feel this can be addressed with the spectrum sensing technol-
ogy described throughout this paper. The next consideration
is the ability to configure the software-defined radio with an
appropriate waveform as needed. Finally, these dynamic algo-
rithms must be paired with appropriate antenna technology
that is capable of supporting the flexibility to autonomously
track multiple nodes. We feel all of these challenges are fre-
quently overlooked in much of the literature related to DTN
routing algorithms and that this integration of the physical and
network layers holds much potential for future research.

C. Simulation and Modeling

The major components described in this paper largely exist
as separate technologies, with varying levels of maturity.
Additional simulation and modeling are needed to integrate
the DTN bundle agent, algorithmic methods, software-defined
radio, and spectrum sensor into a single system. Network emu-
lation and hardware-in-the-loop testing will be needed to fully

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

DUDUKOVICH et al.: TOWARD DEVELOPMENT OF MULTI-AGENT COGNITIVE NETWORKING SYSTEM 281

evaluate the system. In addition, the lunar scenario should be
carefully considered to develop realistic parameters for test-
ing. Additional work is needed to develop a realistic network
model with a sufficient definition of the cognitive (or lack
of) capabilities of each network asset. This particular consid-
eration has a significant impact on the paradigm of learning
mechanisms that may be feasible for the network.

VII. CONCLUSION

In this work, we take a further step towards defining and
implementing a cognitive networking system. We discussed
several major fields of study related to cognitive communi-
cation for the future lunar network including: the network
scenario and orbital modeling, delay tolerant networking, rel-
evant algorithms (spiking neural networks and multi-agent
reinforcement learning), spectrum sensing, and system archi-
tecture. In addition, we discuss an overview of publicly
available data sets for wireless networking, several simula-
tion tools (SNNTorch, PyTorch, and Ray), and preliminary
simulation results. In future work, we hope to mature beyond
basic algorithmic concepts and begin to elaborate on signifi-
cant technology gaps that must be addressed to enable truly
autonomous, intelligent communication in the space network
environment. Many challenges exist throughout all of the lay-
ers of the system, and cognition necessitates collaboration and
awareness between previously disparate elements.

ACKNOWLEDGMENT

The authors would like to thank Dr. Janette Briones,
Dr. Peter Schemmel, Dave Chelmins, Dr. Adam Gannon,
Aaron Smith, and the NASA Space Communication and
Navigation program for their kind support.

REFERENCES

[1] Interagency Operations Advisory Group, “The future lunar communi-
cations architecture,” Rep. Interagency Oper. Advisory Group Lunar
Commun. Archit. Working Group, Rep. V.1.2, Feb. 1, 2020.

[2] R. Dudukovich, K. Wagner, S. Kancharla, J. Fantl, and A. Fung,
“Towards the development of a multi-agent cognitive networking system
for the lunar environment,” in Proc. IEEE Int. Conf. Wireless Space
Extreme Environ., 2021, pp. 7–13.

[3] D. J. Israel et al., “LunaNet: A flexible and extensible lunar exploration
communications and navigation infrastructure,” in Proc. IEEE Aerosp.
Conf., 2020, pp. 1–14.

[4] D. J. Israel, L. V. D. Cooper, K. D. Mauldin, and K. Schauer, “LunaNet:
A flexible and extensible lunar exploration communications and navi-
gation infrastructure and the inclusion of SmallSat platforms,” in Proc.
SmallSat Conf., 2020, pp. 1–7.

[5] S. Burleigh, “Contact graph routing,” IETF, Internet-
Draft draft-burleigh-dtnrg-cgr-00, 2009. [Online]. Available:
https://tools.ietf.org/html/draft-burleigh-dtnrg-cgr-00

[6] D. Y. Stodden and G. D. Galasso, “Space system visualization and anal-
ysis using the satellite orbit analysis program (SOAP),” in Proc. Aerosp.
Appl. Conf., Mar. 1995, pp. 369–387.

[7] D. E. Lee, “Gateway destination orbit model: A continuous 15 year
NRHO reference trajectory,” Nat. Aeronaut. Space Admin., Washington,
DC, USA, Johnson Space Center, Houston, TX, USA, Rep. JSC-E-DAA-
TN72594, Aug. 2019.

[8] D. Brooks, W. Eddy, S. Johnson, and G. Clark, “In-space networking on
NASA’s scan testbed,” in Proc. 34th AIAA Int. Commun. Satellite Syst.
Conf., Oct. 2016, pp. 1–9.

[9] G. Clark, W. Eddy, S. Johnson, D. Brooks, and J. Barnes, “Architecture
for cognitive networking within NASA’s future space communications
infrastructure,” in Proc. 34th AIAA Int. Commun. Satellite Syst. Conf.,
Oct. 2016, pp. 1–10.

[10] I. O’Neill. “NASA Confirms New SIMPLEx Mission Small Satellite
to Blaze Trails Studying Lunar Surface.” 2020. [Online]. Available:
https://www.jpl.nasa.gov/news/nasa-confirms-new-simplex-mission-
small-satellite-to-blaze-trails-studying-lunar-surface

[11] M. Tsay, J. Frongillo, K. Hohman, and B. K. Malphrus, “LunarCube:
A deep space 6U CubeSat with mission enabling ion propulsion tech-
nology,” in Proc. 29th Annu. AIAA/USU Conf. Small Satellites, 2015,
pp. 1–16.

[12] B. L. Ehlmann et al., “Lunar trailblazer: A pioneering small satellite
for lunar water and lunar geology,” in Proc. 52nd Lunar Planetary Sci.
Conf., 2021, p. P060-02.

[13] S. Rowe et al., “Lunar volatile and mineralogy mapping orbiter
(VMMO): Viable science from lunar CubeSats,” in Proc. Small Satellite
Conf., 2021, pp. 1–11.

[14] J. Zakrajsek et al., “Exploration rover concepts and development chal-
lenges,” in Proc. AIAA Space Exploration Conf., vol. 1, Apr. 2005,
pp. 1–23.

[15] R. Lent, R. Dudukovich, A. Gannon, and R. Short, “Applying the cogni-
tive space gateway to swarm topologies,” in Proc. IEEE Cogn. Commun.
Aerosp. Appl. Workshop (CCAAW), 2021, pp. 1–7.

[16] S. Burleigh et al., “Delay-tolerant networking: An approach to inter-
planetary Internet,” IEEE Commun. Mag., vol. 41, no. 6, pp. 128–136,
Jun. 2003.

[17] A. Hylton, D. Raible, G. Clark, R. Dudukovich, B. Tomko, and L. Burke,
“Rising above the cloud: Toward high-rate delay-tolerant networking in
low earth orbit,” in Proc. Adv. Commun. Satellite Syst. 37th Int. Commun.
Satellite Syst. Conf. (ICSSC), 2019, pp. 1–17.

[18] R. Dudukovich, B. LaFuente, A. Hylton, B. J. Tomko, and J. C. Follo,
“A distributed approach to high-rate delay tolerant networking within a
virtualized environment,” in Proc. IEEE Cogn. Commun. Aerosp. Appl.
Workshop, 2021, pp. 1–5.

[19] “High-Rate Delay Tolerant Networking.” NASA Glenn Research Center.
[Online]. Available: https://github.com/nasa/HDTN (Accessed: Jan. 10,
2022).

[20] R. Dudukovich, A. Hylton, and C. Papachristou, “A machine learning
concept for DTN routing,” in Proc. IEEE Int. Conf. Wireless Space
Extreme Environ., 2017, pp. 110–115.

[21] R. Dudukovich, J. Briones, A. Hylton, and G. Clark, “Microservice
architecture for cognitive networks,” in Proc. IEEE Int. Conf. Wireless
Space Extreme Environ., 2020, pp. 39–44.

[22] R. Dudukovich, G. Clark, and C. Papachristou, “Evaluation of classifier
complexity for delay tolerant network routing,” in Proc. IEEE Cogn.
Commun. Aerosp. Appl. Workshop, 2019, pp. 1–7.

[23] R. Dudukovich, “Application of machine learning techniques to delay
tolerant network routing,” Ph.D. dissertation, Dept. Electr. Eng. Comput.
Sci., Case Western Reserve Univ., Cleveland, OH, USA, 2019.

[24] M. S. Net and S. Burleigh, “Evaluation of opportunistic contact graph
routing in random mobility environments,” in Proc. 6th IEEE Int. Conf.
Wireless Space Extreme Environ. (WiSEE), 2018, pp. 183–188.

[25] G. Araniti et al., “Contact graph routing in DTN space networks:
Overview, enhancements and performance,” IEEE Commun. Mag.,
vol. 53, no. 3, pp. 38–46, Mar. 2015.

[26] S. Burleigh, C. Caini, J. J. Messina, and M. Rodolfi, “Toward a unified
routing framework for delay-tolerant networking,” in Proc. IEEE Int.
Conf. Wireless Space Extreme Environ. (WiSEE), 2016, pp. 82–86.

[27] C. Caini and R. Firrincieli, “Application of contact graph routing to
LEO satellite DTN communications,” in Proc. IEEE Int. Conf. Commun.
(ICC), 2012, pp. 3301–3305.

[28] R. Dudukovich and C. Papachristou, “Delay tolerant network routing as
a machine learning classification problem,” in Proc. NASA/ESA Conf.
Adapt. Hardw. Syst. (AHS), 2018, pp. 96–103.

[29] M. A. L. Silva, S. R. de Souza, M. J. F. Souza, and
A. L. C. Bazzan, “A reinforcement learning-based multi-agent frame-
work applied for solving routing and scheduling problems,” Expert
Syst. Appl., vol. 131, pp. 148–171, Oct. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417419302866

[30] E. Birrane, S. Burleigh, and N. Kasch, “Analysis of the con-
tact graph routing algorithm: Bounding interplanetary paths,” Acta
Astronautica, vol. 75, pp. 108–119, Jun./Jul. 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0094576512000288

[31] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in Autonomous Agents and
Multiagent Systems, G. Sukthankar and J. A. Rodriguez-Aguilar, Eds.
Cham, Switzerland: Springer Int., 2017, pp. 66–83.

[32] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017, pp. 6382–6393.

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

282 IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, VOL. 6, 2022

[33] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning: A
selective overview of theories and algorithms,” 2021, arXiv:1911.10635.

[34] D. Mukhutdinov, A. Filchenkov, A. Shalyto, and V. Vyatkin,
“Multi-agent deep learning for simultaneous optimization for
time and energy in distributed routing system,” Future Gener.
Comput. Syst., vol. 94, pp. 587–600, May 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X18309087

[35] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[36] X. Li, X. Hu, W. Li, and H. Hu, “A multi-agent reinforcement learning
routing protocol for underwater optical sensor networks,” in Proc. IEEE
Int. Conf. Commun. (ICC), 2019, pp. 1–7.

[37] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. 33rd Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[38] Y. Zhang and M. M. Zavlanos, “Distributed off-policy actor-critic
reinforcement learning with policy consensus,” in Proc. CDC, 2019,
pp. 4674–4679.

[39] D. J. Gormley, “A low-memory spectral-correlation analyzer for digi-
tal QAM-SRRC waveforms,” M.S. thesis, Dept. Electr. Eng., Cleveland
State Univ., Cleveland, OH, USA, May 2021.

[40] D. J. Gormley and A. A. Stock, “A spectrum sensor for CubeSat
radios,” in Proc. 3rd Bi-Annu. IEEE Cogn. Commun. Aerosp. Appl.
Workshop (CCAAW), Cleveland, OH, USA, Jun. 2021, pp. 1–5,
doi: 10.1109/CCAAW50069.2021.9527303.

[41] “5 steps to an AI proof of concept,” Intel Corp., Santa Clara, CA, USA,
Rep. 337357-001EN, Mar. 2018. [Online]. Available: https://www.intel.
com/content/dam/www/public/us/en/documents/white-papers/five-steps-
ai-proof-of-concept-whitepaper.pdf

[42] “Beyond Today’s AI: Neuromorphic Computing.” Intel Corp.
[Online]. Available: https://www.intel.com/content/www/us/en/research/
neuromorphic-computing.html (Accessed: Oct. 20, 2021).

[43] C.-K. Lin et al., “Programming spiking neural networks on Intel’s
Loihi,” Computer, vol. 51, no. 3, pp. 52–61, Mar. 2018.

[44] T. M. Taha, C. Yakopcic, N. Rahman, T. Atahary, and S. Douglass,
“Cognitive domain ontologies: HPCs to ultra low power neuromorphic
platforms,” in Proc. Neuro-Inspired Comput. Elements Workshop, 2020,
pp. 1–3. [Online]. Available: https://doi.org/10.1145/3381755.3381781

[45] D. Raychaudhuri et al., “Overview of the ORBIT radio grid testbed for
evaluation of next-generation wireless network protocols,” in Proc. IEEE
Wireless Commun. Netw. Conf., vol. 3, 2005, pp. 1664–1669.

[46] J. Burgess et al., Sep. 2008, “The Umass/Diesel Dataset (v. 2008-09-
14),” RAWDAD. [Online]. Available: https://crawdad.org/umass/diesel/
20080914

[47] J. Suárez-Varela et al., “The graph neural networking challenge: A
worldwide competition for education in AI/ML for networks,” 2021,
arXiv:2107.12433.

[48] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and
A. Cabellos-Aparicio, “Routenet: Leveraging graph neural networks
for network modeling and optimization in SDN,” IEEE J. Sel.
Areas Commun., vol. 38, no. 10, pp. 2260–2270, Oct. 2020,
doi: 10.1109/JSAC.2020.3000405.

[49] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan./Feb. 2018.

[50] J. K. Eshraghian et al., “Training spiking neural networks using lessons
from deep learning,” 2021, arXiv:2109.12894.

[51] B. Latifa, Z. Gao, and S. Liu, “Distributed multi-agent Q-learning for
joint channel allocation and power control in cognitive radio networks,”
J. Comput. Inf. Syst., vol. 8, pp. 7071–7078, Sep. 2012.

[52] R. Lent, “Adaptive DTN routing: A neuromorphic networking perspec-
tive,” IEEE Trans. Cogn. Commun. Netw., vol. 7, no. 3, pp. 871–880,
Sep. 2021.

[53] W. Cui and W. Yu, “Scalable deep reinforcement learning for routing
and spectrum access in physical layer,” IEEE Trans. Commun., vol. 69,
no. 12, pp. 8200–8213, Sep. 2021.

[54] Y.-H. Chang, T. Ho, and L. P. Kaelbling, “Mobilized ad-hoc networks:
A reinforcement learning approach,” in Proc. Int. Conf. Auton. Comput.,
2004, pp. 240–247.

[55] M. Zhou et al., “Factorized Q-learning for large-scale multi-agent
systems,” in Proc. 1st Int. Conf. Distrib. Artif. Intell., Oct. 2019, pp. 1–7,
doi: 10.1145/3356464.3357707.

[56] Z. Shou, X. Chen, Y. Fu, and X. Di, “Multi-agent reinforce-
ment learning for Markov routing games: A new modeling
paradigm for dynamic traffic assignment,” Transp. Res. C, Emerg.
Technol., vol. 137, Apr. 2022, Art. no. 103560. [Online] Available:
https://doi.org/10.1016/j.trc.2022.103560.

[57] D. Ye, M. Zhang, and Y. Yang, “A multi-agent framework for packet
routing in wireless sensor networks,” Sensors, vol. 15, pp. 10026–10047,
May 2015.

[58] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” 2017, arXiv:1705.08926.

[59] G. Brockman et al., “OpenAI gym,” 2016, arXiv:1606.01540.
[60] P. Moritz et al., “Ray: A distributed framework for emerging AI

applications,” 2017, arXiv:1712.05889.
[61] J. Foerster et al., “Stabilising experience replay for deep multi-agent

reinforcement learning,” in Proc. 34th Int. Conf. Mach. Learn., 2018,
pp. 1146–1155.

[62] M. Tan, “Multi-agent reinforcement learning: Independent vs. coopera-
tive agents,” in Proc. 10th Int. Conf. Mach. Learn., 1993, pp. 330–337.

[63] J. Boyan and M. Littman, “Packet routing in dynamically chang-
ing networks: A reinforcement learning approach,” in Advances in
Neural Information Processing Systems, vol. 6, J. Cowan, G. Tesauro,
and J. Alspector, Eds. San Mateo, CA, USA: Morgan-Kaufmann,
1994. [Online]. Available: https://proceedings.neurips.cc/paper/1993/file/
4ea06fbc83cdd0a06020c35d50e1e89a-Paper.pdf

[64] Y. Kang, X. Wang, and Z. Lan, “Q-adaptive: A multi-agent reinforce-
ment learning based routing on dragonfly network,” in Proc. 30th Int.
Symp. High-Perform. Parallel Distrib. Comput., 2021, pp. 189–200.
[Online]. Available: https://doi.org/10.1145/3431379.3460650

[65] M. V. Koch and J. A. Downey, “Interference mitigation using cyclic
autocorrelation and multi-objective optimization,” Nat. Aeronaut. Space
Admin., Washington, DC, USA, Glenn Res. Center, Cleveland, OH,
USA, Rep. NASA/TM–2019-220226, Jul. 2019.

[66] B. Wu, W. K. PotterRoss, P. Ludivig, A. S. Chung, and T. Seabrook,
“Absolute localization through orbital maps and surface perspective
imagery: A synthetic lunar dataset and neural network approach,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2019,
pp. 3262–3267.

[67] R. Pessia, 2019, “Artificial Lunar Landscape Dataset,” Kaggle. [Online].
Available: https://www.kaggle.com/romainpessia/artificial-lunar-rocky-
landscape-dataset

[68] D. Ellard, R. Altmann, and A. Gladd, “DTN IP neighbor discov-
ery (IPND),” IETF, Internet-Draft draft-irtf-dtnrg-ipnd-02, Nov. 2012.
[Online]. Available: https://tools.ietf.org/html/draft-irtf-dtnrg-ipnd-02

Rachel Dudukovich received the Ph.D. degree in
computer engineering from Case Western Reserve
University. She is the cognitive network lead for
NASA’s Cognitive Communications Project. Her
research and development efforts are focused on
machine learning-based networking algorithms for
space communications.

Dylan Gormley is currently pursuing the Ph.D.
degree with Case Western Reserve University. He
is the cognitive radio lead for NASA’s Cognitive
Communications Project. His research and develop-
ment efforts are focused on hardware-based signal
processing algorithms for space communications.

Shilpa Kancharla is currently pursuing the mas-
ter’s degree in computer science with North Carolina
State University. Her interests include artificial
intelligence, computer vision, robotics, embedded
systems, and space technology.

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/CCAAW50069.2021.9527303
http://dx.doi.org/10.1109/JSAC.2020.3000405
http://dx.doi.org/10.1145/3356464.3357707

DUDUKOVICH et al.: TOWARD DEVELOPMENT OF MULTI-AGENT COGNITIVE NETWORKING SYSTEM 283

Katherine Wagner is currently pursuing the Ph.D.
degree in computer science with the University
of Illinois–Chicago. Her interests include artificial
intelligence, multi-agent decision making, and cog-
nitive research.

Robert Short received the Ph.D. degree in mathe-
matics from Lehigh University in 2018. He worked
as a Visiting Assistant Professor of Mathematics
with John Carroll University until he joined the
Secure Networks, System Integration and Test
Branch with NASA Glenn Research Center in
2020. He is currently focus on the foundations
of networking theory and how to efficiently route
data through a network using local information. His
research interests lie in the intersection of abstract
mathematics and real-world applications.

David Brooks is a Senior Electrical Engineer and a Software Developer
with SAIC working out of NASA Glenn Research Center. His interests
include software-defined radios, networking protocols, cognitive networking
architectures, and delay-tolerant networking.

Jason Fantl is currently pursuing the undergraduate degree in computer
science and mathematics with the University of Wyoming.

Shruti Janardhanan is currently pursuing the undergraduate degree in com-
puter science with a focus on artificial intelligence and machine learning with
the University of Massachusetts Amherst.

Alexander Fung is currently pursuing the undergraduate degree in computer
science with the University of California at Berkeley, Berkeley.

Authorized licensed use limited to: MIT. Downloaded on August 14,2024 at 20:30:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

